24 resultados para Fabrication of cDNA Micoarrays
Resumo:
In States of Paraíba (PB) and Rio Grande do Norte (RN), northeast of Brazil, the most significant deposits of non-metallic industrial minerals are pegmatites, quartzites and granites, which are located in Seridó region. Extraction of clay, quartz, micas and feldspars occurs mainly in the cities of Várzea (PB), OuroBranco (RN) and Parelhas (RN). Mining companies working in the extraction and processing of quartzite generate large volumes of waste containing about 90% SiO2 in their chemical composition coming from quartz that is one of the basic constituents of ceramic mass for the production of ceramic coating. Therefore, this work evaluates the utilization of these wastes on fabrication of high-quality ceramic products, such as porcelain stoneware, in industrial scale. Characterization of raw materials was based on XRF, XRD, GA, TGA and DSC analysis, on samples composed by 57% of feldspar, 37% of argil and 6% of quartzite residues, with 5 different colors (white, gold, pink, green and black). Samples were synthesized in three temperatures, 1150°C, 1200°C and 1250°C, with one hour isotherm and warming-up tax of 10°C/min. After synthesizing, the specimens were submit to physical characterization tests of water absorption, linear shrinkage, apparently porosity, density, flexural strain at three points. The addition of 6% of quartzite residue to ceramic mass provided a final product with technological properties attending technical norms for the production of porcelain stoneware; best results were observed at a temperature of 1200°C. According to the results there was a high iron oxide on black quartzite, being their use in porcelain stoneware discarded by ethic and structural question, because the material fused at 1250°C. All quartzite formulations had low water absorption when synthesized at 1200°C, getting 0.1% to 0.36% without having gone through the atomization process. Besides, flexural strain tests overcame 27 MPa reaching the acceptance limits of the European Directive EN 100, at 1200°C synthesizing. Thus, the use of quartzite residues in ceramic masses poses as great potential for the production of porcelain stoneware.
Resumo:
The polymer matrix composite materials are being used on a large scale in the most different industrial fields such as aerospace, automotive, oil, among others, since the industrial perspectives is currently working with materials which have a good mechanical performance at high service life and cost / benefit. Thus, the determination of the mechanical properties is indispensable for the characterization of waste resulting in greater expansion of this type of material. Thus, this work will be obtained three plates laminated with tereftálica polymeric matrix reinforced by a bidirectional woven E-glass and kevlar both industrially made, where the plates are manufactured by manual lamination process (hand lay-up), all laminates have five enhancement layers, the first hybrid laminate will consist of bidirectional woven E-glass fiber, kevlar fiber interspersed with layers, is formed by the second bidirectional woven kevlar fiber at the ends of the laminate (two layers), and in the center the glass fiber fabric (three layers), the third plate is composed of only the bidirectional woven E-glass fiber. Then were prepared specimens (CP) by standard, to determine the mechanical properties of tensile and bending in three points. After fabrication of the specimens, they were immersed in oil and seawater. After that, there was a comparison of the mechanical properties for the test condition in the dry state. Showing that there was a considerable increase in the properties studied because the effect of hybridization in laminates.
Resumo:
Due to properties such as excellent biocompatibility, high resistance to corrosion and low specific weight, titanium has been considered a material of great interest for Dentistry. It has been widely used in implants and orthognathic surgeries. Recently, titanium has been seen as a feasible alternative for the fabrication of removable partial denture frameworks, either in pure titanium (99.75%) or in titanium alloy forms (Ti-6Al-4V; Ti-6A1-7Nb). Based on a review of the literature, this work studied the use of titanium for the fabrication of removable partial denture frameworks, focusing on its advantages and disadvantages as well as its characteristics. It was concluded that the use of titanium is a convenient option for partially edentulous arches rehabilitation with quite satisfactory and promising clinical results. However, the need for highly-equipped laboratories increases the cost, preventing its large scale use.
Resumo:
Due to properties such as excellent biocompatibility, high resistance to corrosion and low specific weight, titanium has been considered a material of great interest for Dentistry. It has been widely used in implants and orthognathic surgeries. Recently, titanium has been seen as a feasible alternative for the fabrication of removable partial denture frameworks, either in pure titanium (99.75%) or in titanium alloy forms (Ti-6Al-4V; Ti-6A1-7Nb). Based on a review of the literature, this work studied the use of titanium for the fabrication of removable partial denture frameworks, focusing on its advantages and disadvantages as well as its characteristics. It was concluded that the use of titanium is a convenient option for partially edentulous arches rehabilitation with quite satisfactory and promising clinical results. However, the need for highly-equipped laboratories increases the cost, preventing its large scale use.
Resumo:
He was obtained and studied the feasibility of using TPA (Tissue Cotton Plan) screen type, for bagging, with a weight of 207.9 g / m2 in a composite of orthophthalic crystal polyester resin matrix. The process for obtaining the composite was tested against the maximum number of layers that could be used without compromising the processability and manufacturing of CPs in compression mold. Five configurations / formulations were selected and tested at 1, 4, 8, 10 and 12 layers of cotton tissue - TPA. TPA was not subjected to chemical treatment, only by passing a mechanical washing process. The composite in its various configurations / formulations was characterized to determine its physical properties. The properties of the composite were higher viability resistance to bending, approaching the matrix and impact resistance, superiority in relation to the polyester resin. Another property that has shown good result compared to other composite has water absorption. Analyzing all the properties set the settings / formulations with higher viability were TA8 and TA10, by combining good processability and higher mechanical strength, with lower loss compared to polyester resin matrix. The composite showed lower mechanical behavior of the resin matrix for all the formulations studied except the impact resistance. The SEM showed a good adhesion between the layers of TPA and polyester resin matrix, without the presence of micro voids in the matrix confirming the efficient manufacturing process of the samples for characterization. The composite proposed proved to be viable for the fabrication of structures with low requests from mechanical stresses, and as demonstrated for the manufacture of solar and wind prototypes, and packaging, shelving, decorative items, crafts and shelves, with good visual appearance.
Resumo:
He was obtained and studied the feasibility of using TPA (Tissue Cotton Plan) screen type, for bagging, with a weight of 207.9 g / m2 in a composite of orthophthalic crystal polyester resin matrix. The process for obtaining the composite was tested against the maximum number of layers that could be used without compromising the processability and manufacturing of CPs in compression mold. Five configurations / formulations were selected and tested at 1, 4, 8, 10 and 12 layers of cotton tissue - TPA. TPA was not subjected to chemical treatment, only by passing a mechanical washing process. The composite in its various configurations / formulations was characterized to determine its physical properties. The properties of the composite were higher viability resistance to bending, approaching the matrix and impact resistance, superiority in relation to the polyester resin. Another property that has shown good result compared to other composite has water absorption. Analyzing all the properties set the settings / formulations with higher viability were TA8 and TA10, by combining good processability and higher mechanical strength, with lower loss compared to polyester resin matrix. The composite showed lower mechanical behavior of the resin matrix for all the formulations studied except the impact resistance. The SEM showed a good adhesion between the layers of TPA and polyester resin matrix, without the presence of micro voids in the matrix confirming the efficient manufacturing process of the samples for characterization. The composite proposed proved to be viable for the fabrication of structures with low requests from mechanical stresses, and as demonstrated for the manufacture of solar and wind prototypes, and packaging, shelving, decorative items, crafts and shelves, with good visual appearance.
Resumo:
MELO, Maxymme Mendes de ; PINHEIRO, Andrea Santos ; NASCIMENTO, R. M. ; MARTINELLI, Antonio Eduardo ; DUTRA, Ricardo Peixoto Suassuna ; MELO, Marcus Antônio de Freitas . Análise microestrutural de misturas cerâmicas de grês Porcelanato com adição de chamote de telhas cerâmicas. Cerâmica (São Paulo. Impresso), v. 55, p. 356-364, 2009
Resumo:
The Industry of the Civil Construction has been one of the sectors that most contribute to the pollution of the environment, due to the great amount of residues generated by the construction, demolition and the extraction of raw material. As a way of minimizing the environmental impacts generated by this industry, some governmental organizations have elaborated laws and measures about the disposal of residues from the building construction (CONAMA - resolution 307). This work has as objective the reutilization of residues compound of sand, concrete, cement, red bricks and blocks of cement and mortar for the production of red ceramic, with the objective of minimizing costs and environmental impacts. The investigated samples contained 0% to 50% of residues in weight, and they were sintered at temperatures of 950°C, 1000°C, 1050°C, 1100°C and 1150°C. After the sinterization, the samples were submitted to tests of absorption of water, linear retraction, resistance to bending, apparent porosity, specific density, XRD and SEM. Satisfactory results were obtained in all studied compositions, with the possible incorporation of up to 50% of residues in ceramic mass without great losses in the mechanical strength, giving better results to the incorporation of 30% of residues in the fabrication of ceramic parts, such as roofing tiles, bricks masonry and pierced bricks
Resumo:
Rio Grande do Norte State stands out as one great producer of structural clay of the brazilian northeastern. The Valley Assu ceramic tiles production stands out obtained from ilitics ball clays that abound in the region under study. Ceramics formulation and the design of experiments with mixture approach, has been applied for researchers, come as an important aid to decrease the number of experiments necessary to the optimization. In this context, the objective of this work is to evaluate the effects of the formulation, temperature and heating rate in the physical-mechanical properties of the red ceramic body used for roofing tile fabrication of the Valley Assu, using design of mixture experiments. Four clays samples used in two ceramics industry of the region were use as raw material and characterized by X-ray diffraction, chemical composition, differential thermal analysis (DTA), thermogravimetric analysis (TGA), particle size distribution analysis and plasticity techniques. Afterwards, they were defined initial molded bodies and made specimens were then prepared by uniaxial pressing at 25 MPa before firing at 850, 950 and 1050 ºC in a laboratory furnace, with heating rate in the proportions of 5, 10 e 15 ºC/min. The following tecnologicals properties were evaluated: linear firing shrinkage, water absorption and flexural strength. Results show that the temperature 1050 ºC and heating rate of 5 ºC/min was the best condition, therefore presented significance in all physical-mechanical properties. The model was accepted as valid based of the production of three new formulations with fractions mass diferents of the initial molded bodies and heated with temperature at 1050 ºC and heating rate of 5 ºC/min. Considering the formulation, temperature and heating rate as variables of the equations, another model was suggested, where from the aplication of design of experiments with mixtures was possible to get a best formulation, whose experimental error is the minor in relation to the too much formulations