19 resultados para Enovelamento de proteína


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reactive oxygen species (ROS) are produced by aerobic metabolism and react with biomolecules, such as lipids, proteins and DNA. In high concentration, they lead to oxidative stress. Among ROS, singlet oxygen (1O2) is one of the main ROS involved in oxidative stress and is one of the most reactive forms of molecular oxygen. The exposure of some dyes, such as methylene blue (MB) to light (MB+VL), is able to generate 1O2 and it is the principle involved in photodynamic therapy (PDT). 1O2 e other ROS have caused toxic and carcinogenic effects and have been associated with ageing, neurodegenerative diseases and cancer. Oxidative DNA damage is mainly repaired by base excision repair (BER) pathway. However, recent studies have observed the involvement of nucleotide excision repair (NER) factors in the repair of this type of injury. One of these factors is the Xeroderma Pigmentosum Complementation Group A (XPA) protein, which acts with other proteins in DNA damage recognition and in the recruitment of other repair factors. Moreover, oxidative agents such as 1O2 can induce gene expression. In this context, this study aimed at evaluating the response of XPA-deficient cells after treatment with photosensitized MB. For this purpose, we analyzed the cell viability and occurrence of oxidative DNA damage in cells lines proficient and deficient in XPA after treatment with MB+VL, and evaluated the expression of this enzyme in proficient and complemented cells. Our results indicate an increased resistance to treatment of complemented cells and a higher level of oxidative damage in the deficient cell lines. Furthermore, the treatment was able to modulate the XPA expression up to 24 hours later. These results indicate a direct evidence for the involvement of NER enzymes in the repair of oxidative damage. Besides, a better understanding of the effects of PDT on the induction of gene expression could be provided

Relevância:

20.00% 20.00%

Publicador:

Resumo:

studies using UV as a source of DNA damage. However, even though unrepaired UV-induced DNA damages are related to mutagenesis, cell death and tumorigenesis, they do not explain phenotypes such as neurodegeneration and internal tumors observed in patients with syndromes like Xeroderma Pigmentosum (XP) and Cockayne Syndrome (CS) that are associated with NER deficiency. Recent evidences point to a role of NER in the repair of 8-oxodG, a typical substrate of Base Excision Repair (BER). Since deficiencies in BER result in genomic instability, neurodegenerative diseases and cancer, it was investigated in this research the impact of XPC deficiency on BER functions in human cells. It was analyzed both the expression and the cellular localization of APE1, OGG1 e PARP-1, the mainly BER enzymes, in different NER-deficient human fibroblasts. The endogenous levels of these enzymes are reduced in XPC deficient cells. Surprisingly, XP-C fibroblasts were more resistant to oxidative agents than the other NER deficient fibroblasts, despite presenting the highest of 8-oxodG. Furthermore, subtle changes in the nuclear and mitochondrial localization of APE1 were detected in XP-C fibroblasts. To confirm the impact of XPC deficiency in the regulation of APE1 and OGG1 expression and activity, we constructed a XPC-complemented cell line. Although the XPC complementation was only partial, we found that XPC-complemented cells presented increased levels of OGG1 than XPC-deficient cells. The extracts from XPC-complemented cells also presented an elevated OGG1 enzimatic activity. However, it was not observed changes in APE1 expression and activity in the XPCcomplemented cells. In addition, we found that full-length APE1 (37 kDa) and OGG1- α are in the mitochondria of XPC-deficient fibroblasts and XPC-complemented fibroblasts before and after induction of oxidative stress. On the other hand, the expression of APE1 and PARP-1 are not altered in brain and liver of XPC knockout mice. However, XPC deficiency changed the APE1 localization in hypoccampus and hypothalamus. We also observed a physical interaction between XPC and APE1 proteins in human cells. In conclusion, the data suggest that XPC protein has a role in the regulation of OGG1 expression and activity in human cells and is involved mainly in the regulation of APE1 localization in mice. Aditionally, the response of NER deficient cells under oxidative stress may not be only associated to the NER deficiency per se, but it may include the new functions of NER enzymes in regulation of expression and cell localization of BER proteins

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flowering is a fundamental process in the life cycle for plant. This process is marked by vegetative to reproductive apical meristem conversion, due to interactions between several factors, both internal and external to plant. Therefore, eight subtractive libraries were constructed using apical meristem induced or not induced for two contrasting species: Solanum lycopersicum cv. Micro-Tom and Solanum pimpinellifolium. Several cDNAs were identified and among these, were selected two cDNAs: one homologous cDNA to cyclophilin (LeCYP1) and the other to Auxin repressed protein (ARP). It has observed that LeCYP1 and ARP genes are important in the developmental process to plants. In silico analysis, were used several databases with the exclusion criterion E-value <1.0x10-15. As a result, conservation was observed for proteins analyzed by means of multiple alignments and the presence of functional domains. Then, overexpression cassettes were constructed for the ARP cDNA in sense and antisense orientations. For this step, it was used the CaMV35S promoter. The cDNA orientation (sense or antisense) in relation to the promoter was determined by restriction enzymes and sequencing. Then, this cassette was transferred to binary vector pZP211 and these cassettes were transferred into Agrobacterium tumefaciens LBA4404. S. lycopersicum cv. Micro-Tom (MT) and MT-Rg1 plants were transformed. In addition, seedlings were subjected to hormone treatments using a synthetic auxin (- naphthalene acetic acid) and cyclosporin A (cyclophilin inhibitor) treatments and it was found that the hormone treatment there were changes in development of lateral roots pattern, probably related to decreases in auxin signaling caused by reduction of LeCYP1 in MT-dgt plants while cyclosporin A treatments, there was a slight delay in flowering in cv. MT plants. Furthermore, assay with real-time PCR (RT-qPCR) were done for expression level analysis from LeCYP1 and ARP in order to functionally characterize these sequences in tomato plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite advances in antibiotic therapy, bacterial meningitis (BM) remains with high mortality and morbidity rates in worldwide. One important mechanism associated to sequels during disease is the intense inflammatory response which promotes an oxidative burst and release of reactive oxygen species, consequently leading to cell death. Activation of DNA repair enzymes during oxidative stress has been demonstrated in several neurological disorders. APE1/Ref-1 is a multifunctional protein involved in DNA repair and plays a redox function on transcription factors such as NFkB and AP-1.The aim of this study was assess the role of APE1/Ref-1 on inflammatory response and the possibility of its modulation to reduce the sequels of the disease. Firstly it was performed an assay to measure cytokine in cerebrospinal fluid of patients with BM due to Streptococcus pneumoniae and Neisseriae meningitides. Further, a cellular model of inflammation was used to observe the effect of the inhibition of the endonuclease and redox activity of APE1/Ref-1 on cytokine levels. Additionally, APE1/Ref-1 expression in cortex and hippocampus of rat with MB after vitamin B6 treatment was evaluated. Altogether, results showed a similar profile of cytokines in the cerebrospinal fluid of patients from both pathogens, although IFNy showed higher expression in patients with BM caused by S. pneumoniae. On the other hand, inhibitors of APE1/Ref-1 reduced cytokine levels, mainly TNF-α. Reduction of oxidative stress markers was also observed after introduction of inhibitors in the LPS-stimulated cell. In the animal model, BM increased the expression of the protein APE1/Ref-1, while vitamin B6 promoted reduction. Thereby, this data rise important factors to be considered in pathogenesis of BM, e.g., IFNy can be used as prognostic factor during corticosteroid therapy, APE1/Ref-1 can be an important target to modulate the level of inflammation and VIII oxidative stress, and vitamin B6 seems modulates several proteins related to cell death. So, this study highlights a new understanding on the role of APE1/Ref-1 on the inflammation and the oxidative stress during inflammation condition