16 resultados para ELASTICITY
Resumo:
In this work, we have studied the acoustic phonon wave propagation within the periodic and quasiperiodic superlattices of Fibonacci type. These structures are formed by phononic crystals, whose periodicity allows the raise of regions known as stop bands, which prevent the phonon propagation throughout the structure for specific frequency values. This phenomenon allows the construction of acoustic filters with great technological potential. Our theoretical model were based on the method of the transfer matrix, thery acoustics phonons which describes the propagation of the transverse and longitudinal modes within a unit cell, linking them with the precedent cell in the multilayer structure. The transfer matrix is built taking into account the elastic and electromagnetic boundary conditions in the superllatice interfaces, and it is related to the coupled differential equation solutions (elastic and electromagnetic) that describe each model under consideration. We investigated the piezoelectric properties of GaN and AlN the nitride semiconductors, whose properties are important to applications in the semiconductor device industry. The calculations that characterize the piezoelectric system, depend strongly on the cubic (zinc-bend) and hexagonal (wurtzite) crystal symmetries, that are described the elastic and piezoelectric tensors. The investigation of the liquid Hg (mercury), Ga (gallium) and Ar (argon) systems in static conditions also using the classical theory of elasticity. Together with the Euler s equation of fluid mechanics they one solved to the solid/liquid and the liquid/liquid interfaces to obtain and discuss several interesting physical results. In particular, the acoustical filters obtained from these structures are again presented and their features discussed