56 resultados para Desenvolvimento e performance
Resumo:
This work addresses issues related to analysis and development of multivariable predictive controllers based on bilinear multi-models. Linear Generalized Predictive Control (GPC) monovariable and multivariable is shown, and highlighted its properties, key features and applications in industry. Bilinear GPC, the basis for the development of this thesis, is presented by the time-step quasilinearization approach. Some results are presented using this controller in order to show its best performance when compared to linear GPC, since the bilinear models represent better the dynamics of certain processes. Time-step quasilinearization, due to the fact that it is an approximation, causes a prediction error, which limits the performance of this controller when prediction horizon increases. Due to its prediction error, Bilinear GPC with iterative compensation is shown in order to minimize this error, seeking a better performance than the classic Bilinear GPC. Results of iterative compensation algorithm are shown. The use of multi-model is discussed in this thesis, in order to correct the deficiency of controllers based on single model, when they are applied in cases with large operation ranges. Methods of measuring the distance between models, also called metrics, are the main contribution of this thesis. Several application results in simulated distillation columns, which are close enough to actual behaviour of them, are made, and the results have shown satisfactory
Resumo:
The search for ever smaller device and without loss of performance has been increasingly investigated by researchers involving applied electromagnetics. Antennas using ceramics materials with a high dielectric constant, whether acting as a substract element of patch radiating or as the radiant element are in evidence in current research, that due to the numerous advantages offered, such as: low profile, ability to reduce the its dimensions when compared to other devices, high efficiency of ratiation, suitability the microwave range and/or millimeter wave, low temperature coefficient and low cost. The reason for this high efficiency is that the dielectric losses of ceramics are very low when compared to commercially materials sold used in printed circuit boards, such as fiberglass and phenolite. These characteristics make ceramic devices suitable for operation in the microwave band. Combining the design of patch antennas and/or dielectric resonator antenna (DRA) to certain materials and the method of synthesis of these powders in the manufacture of devices, it s possible choose a material with a dielectric constant appropriate for the design of an antenna with the desired size. The main aim of this work is the design of patch antennas and DRA antennas on synthesis of ceramic powders (synthesis by combustion and polymeric precursors - Pe- chini method) nanostructured with applications in the microwave band. The conventional method of mix oxides was also used to obtain nanometric powders for the preparation of tablets and dielectric resonators. The devices manufactured and studied on high dielectric constant materials make them good candidates to have their small size compared to other devices operating at the same frequency band. The structures analyzed are excited by three different techniques: i) microstrip line, ii) aperture coupling and iii) inductive coupling. The efficiency of these techniques have been investigated experimentally and compared with simulations by Ansoft HFSS, used in the accurate analysis of the electromagnetic behavior of antennas over the finite element method (FEM). In this thesis a literature study on the theory of microstrip antennas and DRA antenna is performed. The same study is performed about the materials and methods of synthesis of ceramic powders, which are used in the manufacture of tablets and dielectric cylinders that make up the devices investigated. The dielectric media which were used to support the analysis of the DRA and/or patch antennas are analyzed using accurate simulations using the finite difference time domain (FDTD) based on the relative electrical permittivity (er) and loss tangent of these means (tand). This work also presents a study on artificial neural networks, showing the network architecture used and their characteristics, as well as the training algorithms that were used in training and modeling some parameters associated with the devices investigated
Resumo:
In the globalized world modern telecommunications have assumed key role within the company, causing a large increase in demand for the wireless technology of communication, which has been happening in recent years have greatly increased the number of applications using this technology. Due to this demand, new materials are developed to enable new control mechanisms and propagation of electromagnetic waves. The research to develop new technologies for wireless communication presents a multidisciplinary study that covers from the new geometries for passive antennas, active up to the development of materials for devices that improve the performance at the frequency range of operation. Recently, planar antennas have attracted interest due to their characteristics and advantages when compared with other types of antennas. In the area of mobile communications the need for antennas of this type has become increasingly used, due to intensive development, which needs to operate in multifrequency antennas and broadband. The microstrip antennas have narrow bandwidth due to the dielectric losses generated by irradiation. Another limitation is the degradation of the radiation pattern due to the generation of surface waves in the substrate. Some techniques have been developed to minimize this limitation of bandwidth, such as the study of type materials PBG - Photonic Band Gap, to form the dielectric material. This work has as main objective the development project of a slot resonator with multiple layers and use the type PBG substrate, which carried out the optimization from the numerical analysis and then designed the device initially proposed for the band electromagnetic spectrum between 3-9 GHz, which basically includes the band S to X. Was used as the dielectric material RT/Duroid 5870 and RT/Duroid 6010.LM where both are laminated ceramic-filled PTFE dielectric constants 2.33 and 10.2, respectively. Through an experimental investigation was conducted an analysis of the simulated versus measured by observing the behavior of the radiation characteristics from the height variation of the dielectric multilayer substrates. We also used the LTT method resonators structures rectangular slot with multiple layers of material photonic PBG in order to obtain the resonance frequency and the entire theory involving the electromagnetic parameters of the structure under consideration. xviii The analysis developed in this work was performed using the method LTT - Transverse Transmission Line, in the field of Fourier transform that uses a component propagating in the y direction (transverse to the real direction of propagation z), thus treating the general equations of the fields electric and magnetic and function. The PBG theory is applied to obtain the relative permittivity of the polarizations for the sep photonic composite substrates material. The results are obtained with the commercial software Ansoft HFSS, used for accurate analysis of the electromagnetic behavior of the planar device under study through the Finite Element Method (FEM). Numerical computational results are presented in graphical form in two and three dimensions, playing in the parameters of return loss, frequency of radiation and radiation diagram, radiation efficiency and surface current for the device under study, and have as substrates, photonic materials and had been simulated in an appropriate computational tool. With respect to the planar device design study are presented in the simulated and measured results that show good agreement with measurements made. These results are mainly in the identification of resonance modes and determining the characteristics of the designed device, such as resonant frequency, return loss and radiation pattern
Resumo:
The use of solar energy for electricity generation has shown a growing interest in recent years. Generally, the conversion of solar energy into electricity is made by PV modules installed on fixed structures, with slope determined by the latitude of the installation site. In this sense, the use of mobile structures with solar tracking, has enabled increased production of the generated energy. However, the performance of these structures depends on the type of tracker and the position control used. In this work, it is proposed position control a strategy applied for a solar tracker, which will be installed in Laboratory of Power Electronics and Renewable Energy (LEPER), located in the Federal University of Rio Grande do Norte (UFRN). The tracker system is of polar type with daily positioning east-west and tilt angle manual adjustment in the seasonal periods, from north to south
Resumo:
The advantage in using vegetable fibres in place of synthetic fibres such as glass fibre, for reinforcements in composites are: biodegradability, low cost, low density, good tenacity, good thermal properties, low energy content and reduced use of instruments for its treatment or processing. Even though, problems related to low mechanical performance of some of the natural fibres, has caused difficulty in their direct application in structural elements. The use of alternative materials like hybrid composites has been encouraged, thus trying to better the structural performance of the composites with natural fibres. This work presents a comparative study of the strength and stiffness of hybrid composites with orthopthalic polyester matrix reinforced with E-fibre glass, jute and curauá. The experimental part includes uniaxial tension and three point bending tests to determine the mechanical properties of the final product. The hybrid composite was manufactured in a local industry and was in the form of laminates. All the samples were projected to withstand the possible structural applications as reservoirs and pipes. CH (laminated hybrid composite with glass and curauá fibres). The results obtained show clearly the influence of the hybridization in all the types tested and indicate a good mechanical performance of the composite with glass/curauá fibres in relation to the composite with glass fibres. Aspects in relation to the interfaces glass/curauá composites besides the fracture characteristics for all loading types were also analysed
Resumo:
In general, the designs of equipment takes into account the effects and processes of deterioration it will undergo and arrives at an approximate useful life. However, changes in operational processes and parameters, the action of external agents, the kind of maintenance conducted, the means of monitoring, and natural and accidental occurrences completely modify the desired performance of the equipment. The discontinuities that occur in anisotropic materials often and due to different factors evolve from being subcritical to critical acquiring the status of defect and compromising the physical integrity of the equipment. Increasingly sophisticated technological means of detection, monitoring and assessment of these discontinuities are required to respond ever more rapidly to the requirements of industry. This paper therefore presents a VPS (Virtual Pipe System) computational tool which uses the results of ultrasonic tests on equipment, plotting the discontinuities found in models created in the CAD and CAE systems, and then simulates the behavior of these defects in the structure to give an instantaneous view of the final behavior. This paper also presents an alternative method of conventional ultrasonic testing which correlates the integrity of an overlay (carbon steel and stainless steel attached by welding) and the reflection of ultrasonic waves coming from the interface between the two metals, thus making it possible to identify cracks in the casing and a shift of the overlay
Resumo:
The standardization of the bovine skin thickness in the leather industry generates a residue known as wet-blue . At the end of twentieth century, the brazilian industry discarded about 131 thousand tons of this residue in nature, provoking a great environmental liability. In this paper is presented the analyses of the termophysical properties, thermal and volumetric expansion performance of a composite of vegetable resin of castor oil plant (Ricinus communis) with load of industrial residue of leather "wet-blue", for application as thermal isolation material of warm surfaces. There were considered four percentile levels of residue load in the proportions in mass of 0%, 5%, 10% and 15%, added to the expansible resin of castor oil plant in two configurations: sawed leather and crushed leather in a smaller particle (powder) by grinding in a mill of balls. Twenty-one proof bodies were produced for termophysical properties analysis (three for each configuration) and four proof bodies for rehearsals of thermal acting. Analyses of thermal acting were done in test cameras. The results of the rehearsals were compared to those obtained considering the castor oil plant foam without residue addition. A small reduction of the thermal conductivity of the composite was observed in the proportion of 10% of leather residue in both configurations. Regarding thermal conductivity, calorific capacity and diffusivity, it was verified that the proposed composite showed very close values to the commercial insulating materials (glass wool, rock wool, EPS). It was still demonstrated the technical viability of the use of composite as insulating thermal for systems of low potency. The composite presented larger volumetric expansion with 15% of sawed residue of leather.
Resumo:
This research this based on the seminar on Use of Natural Fluids in Refrigeration and Air-Conditioning Systems conducted in 2007 in Sao Paulo. The event was inserted in the National Plan for Elimination of CFCs, coordinated by the Ministry of Environment and implemented by the United Nations Development Programme (UNDP). The objective of this research is analyze the performance of the hydrocarbons application as zeotropic mixtures in domestic refrigerator and validate the application of technical standards for pull down and cycling (on-off) tests to the mixture R290/R600a (50:50) in domestic refrigerator. It was first developed an computational analysis of R290/R600a (50:50) compared to R134a and other mass fractions of the hydrocarbons mixtures in the standard ASHRAE refrigeration cycle in order to compare the operational characteristics and thermodynamic properties of fluids based on the software REFPROP 6.0. The characteristics of the Lorenz cycle is presented as an application directed to zeotropic mixtures. Standardized pull down and cycling (on-off) tests were conducted to evaluate the performance of the hydrocarbons mixture R290/R600a (50:50) as a drop-in alternative to R134a in domestic refrigerator of 219 L. The results showed that the use of R290/R600a (50:50) with a charge of refrigerant reduced at 53% compared to R134a presents reduced energy performance than R134a. The COP obtained with hydrocarbon mixture was about 13% lower compared to R134a. Pull down times in the refrigerator compartments for fluids analyzed were quite close, having been found a 4,7% reduction in pull down time for the R290/R600a compared to R134a, in the freezer compartment. The data indicated a higher consumption of electric current from the refrigerator when operating with the R290/R600a. The values were higher than about 3% compared to R134a. The charge of 40 g of R290/R600a proved very low for the equipment analyzed
Resumo:
This research work is based, in search of reinforcement s vegetable alternative to polymer composites. The idealization of making a hybrid composite reinforced with vegetable fibers licuri with synthetic fibers is a pioneer in this area. Thus was conceived a hybrid composite laminate consisting of 05 (five) layers being 03 (three) webs of synthetic fibers of glass and E-02 (two) unidirectional fabrics of vegetable fibers licuri. In the configuration of the laminate layers have alternating distribution. The composite laminate was manufactured in Tecniplas Commerce & Industry LTD, in the form of a card through the manufacturing process of hand lay up. Licuri fibers used in making the foil were the City of Mare Island in the state of Bahia. After cooking and the idealization of the hybrid composite laminate, the objective of this research work has focused on evaluating the performance of the mechanical properties (ultimate strength, stiffness and elongation at break) through uniaxial tensile tests and three point bending. Comparative studies of the mechanical properties and as well as among other types of laminated hybrid composites studied previously, were performed. Promising results were found with respect to the mechanical properties of strength and stiffness to the hybridization process idealized here. To complement the entire study were analyzed in terms of macroscopic and microscopic characteristics of the fracture for all tests.
Resumo:
One of the current major concerns in engineering is the development of aircrafts that have low power consumption and high performance. So, airfoils that have a high value of Lift Coefficient and a low value for the Drag Coefficient, generating a High-Efficiency airfoil are studied and designed. When the value of the Efficiency increases, the aircraft s fuel consumption decreases, thus improving its performance. Therefore, this work aims to develop a tool for designing of airfoils from desired characteristics, as Lift and Drag coefficients and the maximum Efficiency, using an algorithm based on an Artificial Neural Network (ANN). For this, it was initially collected an aerodynamic characteristics database, with a total of 300 airfoils, from the software XFoil. Then, through the software MATLAB, several network architectures were trained, between modular and hierarchical, using the Back-propagation algorithm and the Momentum rule. For data analysis, was used the technique of cross- validation, evaluating the network that has the lowest value of Root Mean Square (RMS). In this case, the best result was obtained for a hierarchical architecture with two modules and one layer of hidden neurons. The airfoils developed for that network, in the regions of lower RMS, were compared with the same airfoils imported into the software XFoil
Resumo:
With water pollution increment at the last years, so many progresses in researches about treatment of contaminated waters have been developed. In wastewaters containing highly toxic organic compounds, which the biological treatment cannot be applied, the Advanced Oxidation Processes (AOP) is an alternative for degradation of nonbiodegradable and toxic organic substances, because theses processes are generation of hydroxyl radical based on, a highly reactivate substance, with ability to degradate practically all classes of organic compounds. In general, the AOP request use of special ultraviolet (UV) lamps into the reactors. These lamps present a high electric power demand, consisting one of the largest problems for the application of these processes in industrial scale. This work involves the development of a new photochemistry reactor composed of 12 low cost black light fluorescent lamps (SYLVANIA, black light, 40 W) as UV radiation source. The studied process was the photo-Fenton system, a combination of ferrous ions, hydrogen peroxide, and UV radiation, it has been employed for the degradation of a synthetic wastewater containing phenol as pollutant model, one of the main pollutants in the petroleum industry. Preliminary experiments were carrier on to estimate operational conditions of the reactor, besides the effects of the intensity of radiation source and lamp distribution into the reactor. Samples were collected during the experiments and analyzed for determining to dissolved organic carbon (DOC) content, using a TOC analyzer Shimadzu 5000A. The High Performance Liquid Chromatography (HPLC) was also used for identification of the cathecol and hydroquinone formed during the degradation process of the phenol. The actinometry indicated 9,06⋅1018 foton⋅s-1 of photons flow, for 12 actived lamps. A factorial experimental design was elaborated which it was possible to evaluate the influence of the reactants concentration (Fe2+ and H2O2) and to determine the most favorable experimental conditions ([Fe2+] = 1,6 mM and [H2O2] = 150,5 mM). It was verified the increase of ferrous ions concentration is favorable to process until reaching a limit when the increase of ferrous ions presents a negative effect. The H2O2 exhibited a positive effect, however, in high concentrations, reaching a maximum ratio degradation. The mathematical modeling of the process was accomplished using the artificial neural network technique
Resumo:
The aim of this approach is to describe the design and construction of a low-cost automated water sampler prototype. In recent years, there is an increasing need on the use of automated equipments for hydro climatic variables to be use in urban and rural environments. Such devices are always used to provide measured information which is of crucial importance on the development of water resources strategies at watershed scale. Actually, many research and water public institutions have been using these kinds of equipments. In most of the cases, automated equipments are expensive and need to be imported, generating a situation of technologic dependency. The prototype is based on an electronic system which controls a peristaltic pump functioning, five solenoid valves and an ultrasonic sensor connected to a datalloger. An interface with the user allows communication with a PC, when the equipment functioning parameters can be provided. The equipment has a hydraulic module composed by a 12V peristaltic pump connected to a distribution circuit composed by five solenoid valves, one of them being used to clean the circuit before each sampling procedure. Samples are collected by four 1.95 polyethylene bottles. The sampler body was made of acrylic material, with a cylindrical shape, and dimensions 0.72 m and 0.38 m height and diameter, respectively. The weight of the equipment without samples is approximately 15 kg, which infers to its portability. The prototype development total cost budget was approximately US$ 1,560.00. Laboratory tests aimed to evaluate the equipment performance and functioning demonstrated satisfactory results
Resumo:
Introduction: Hypoestrogenism is the main characteristic of female aging. It promotes significant changes in body composition, both in fat mass as in lean body mass, leading to a decrease in muscle strength and physical performance. Objective: The aim of this study was to test whether menopausal status and hormone levels are associated with muscular strength and physical performance in middle-aged women. Methods: In a cross-sectional study it was collected sociodemographic data, gynecological history, anthropometric and biochemical measures in women aged 40 to 65 years in Parnamirim-RN. The menopause status (pre, peri and post menopause) was determined by menstrual history. All women underwent three dimensions of physical performance assessment: handgrip dynamometry, gait speed and chair stands test - Short Physical Performance Battery (SPPB). Categorical data were presented as absolute and relative frequencies. Quantitative data were showed as mean and standard deviation and the normality of distribution was verified with Kolmogorov-Smirnov (KS) test. Biochemical measures of estradiol and follicle-stimulating hormone (FSH) were transformed to log10. ANOVA with Tukey post-test for comparison of variables between the groups pre, peri and post-menopausal was performed and then multiple linear regression analyzes. Results: Two hundred and seventy eight women aged 50.2 (±5.58) years composed this study, being 50 women in premenopausal status (18%), 122 in perimenopausal (43.9%), and 106 postmenopausal stage (38.1%). The groups were different in age (p=0.001), marital relationship duration (p <0.001), number of pregnancies (p=0.001) and parity (p=0.001). Differences in biochemical measures were observed among the groups: estradiol (p<0.001), FSH (p<0.001), total cholesterol (p=0.001). There were no differences in gait velocity between menopausal status. Values in mean of grip strength decreased by postmenopausal women to perimenopausal and premenopausal ones (24.5 ± 5.1, 25.6 ± 5.4, 26.9 ± 4.9 for post-stage, pre and peri menopausas, respectively, p = 0.02) and the performance of chair stands test was better in premenopausal women compared with that in peri and postmenopausal status (p = 0.02). In multiple linear regression for muscle strength, the variables that remained were: age, estradiol and somatic symptoms measured by Menopause Rating Scale-MRS (R2=0.15). While for the xiv chair-stands test the predictors were number of births and FSH values (R2=0.04). Conclusion: There is a relationship between the stages of menopause and muscle performance in measures of grip strength and sit-up test and these are influenced by the fall of estrogens levels. Data suggest that the decrease in muscle strength and physical performance already appear in the transition to menopause stage, pointing to the need for more research in this area and appropriate preventive interventions
Resumo:
Down syndrome (DS) is one of the most frequent causes of intellectual disability, affecting one in every 600 to 1000 live births. Studies have demonstrated that people with DS have a lower capacity for short-term memory (STM) and working memory (WM), which affects their capability to learn new words and to follow spoken instructions, specially when they involve multiple information or consecutive orders/orientations. It seems that the basis of the learning process, as it happens with language and mathematics comprehension and reasoning, relies in the STM and WM systems. Individuals with DS are increasingly included in mainstream education, and yet, very few researches have been conducted to investigate the influence of memory development and the type of enrollment (regular school and special school). This study investigated the relationship between the type of school enrollment with the performance on STM tests and also, the relationship of this performance with early stimulation (ES). The tests used in the first research were the digit span, free recall, word recognition and subtests of the Wechsler Intelligence Scale for Children Third Edition (WISC-III). Individuals enrolled in the regular schools group had higher scores on the digit span test and the subtests of the WISC-III. In the free recall and recognition tests, no differences were found. This study indicates that the type of enrollment might influence the memory development of individuals with DS and clearly points the need for future investigations. In the second research, the tests used were the digit span, free word recall and subtests of the WISC-III. The test results showed better performance by adults that received ES before six months of age. The studies showed improvement in STM both in people who attended or were attending regular school, as well as those who benefited from ES before six months of age. However, some issues still need to be better understood. What is the relation between this stimulation with the individual s education? Since ES may reflect a greater family involvement with the individual, what is the role of emotional components derived from this involvement in the cognitive improvement? These and other questions are part of the continuity of this study
Resumo:
The increase of capacity to integrate transistors permitted to develop completed systems, with several components, in single chip, they are called SoC (System-on-Chip). However, the interconnection subsystem cans influence the scalability of SoCs, like buses, or can be an ad hoc solution, like bus hierarchy. Thus, the ideal interconnection subsystem to SoCs is the Network-on-Chip (NoC). The NoCs permit to use simultaneous point-to-point channels between components and they can be reused in other projects. However, the NoCs can raise the complexity of project, the area in chip and the dissipated power. Thus, it is necessary or to modify the way how to use them or to change the development paradigm. Thus, a system based on NoC is proposed, where the applications are described through packages and performed in each router between source and destination, without traditional processors. To perform applications, independent of number of instructions and of the NoC dimensions, it was developed the spiral complement algorithm, which finds other destination until all instructions has been performed. Therefore, the objective is to study the viability of development that system, denominated IPNoSys system. In this study, it was developed a tool in SystemC, using accurate cycle, to simulate the system that performs applications, which was implemented in a package description language, also developed to this study. Through the simulation tool, several result were obtained that could be used to evaluate the system performance. The methodology used to describe the application corresponds to transform the high level application in data-flow graph that become one or more packages. This methodology was used in three applications: a counter, DCT-2D and float add. The counter was used to evaluate a deadlock solution and to perform parallel application. The DCT was used to compare to STORM platform. Finally, the float add aimed to evaluate the efficiency of the software routine to perform a unimplemented hardware instruction. The results from simulation confirm the viability of development of IPNoSys system. They showed that is possible to perform application described in packages, sequentially or parallelly, without interruptions caused by deadlock, and also showed that the execution time of IPNoSys is more efficient than the STORM platform