36 resultados para Concreto - Mistura
Resumo:
This works aims at investigating the effects of adding waste from RCBP-polyester button manufacturing to Portland cement concrete, particularly regarding its consistency and mechanic strength. The RCBP used came from a button factory located in Parnamirim, RN, Brazil. The waste was added to the concrete on different ratios: 5 %, 10 %, 15 % and 20 % of the total cement mass. A sample of concrete without the RCBP was used as reference, 1:1,33:2,45:0,50. For the mechanic strength test four samples were tested with different ages (3, 7 and 28 days old) and mixtures. Furthermore, a Slump Test was also conducted in order to verify the concrete s consistency. A tendency to a reduction in the compression resistance was noticed for all samples. For the samples with 5 % and 10 %, there was also an increase in the traction resistance during inflexion, regarding the reference concrete. In the microstructural analysis, the RBCP was observed to show an irregular and porous surface, thus explaining the consistency decrease
Resumo:
From the 70`s, with the publication of the Manifesto for Environment UN Conference, held in Stockholm, in Sweden (1972), defend and improve the environment became part of our daily lives. Thus, several studies have emerged in several segments in order to reuse the waste. Some examples of waste incorporated in portland cement concrete are: rice husk ash, bagasse ash of cane sugar, powder-stone, microsilica, tire rubber, among others. This research used the residue of the mining industry Scheelite, to evaluate the incorporation of the residue composition of Portland cement concrete, replacing the natural sand. The percentage of residue were incorporated from 0% to 100%, with a variation of 10%, 11 being produced concrete mix in the ratio 1:2:3:0.60, by mass. We evaluated the following characteristics of concrete: slump test, compressive strength, tensile strength by diametral compression, water absorption, porosity and density, based on the ABNT, through tests performed in the Laboratory of Civil Construction, UFRN. The trace with the addition of 60% scheelite residue was obtained which better performance. Therefore, the use of the waste from the production of Scheelite is feasible due to the durability parameters (water absorption and porosity), sustainability, and the good results of the resistance of the concrete
Resumo:
The aim of this work is the numerical simulation of the mechanical performance of concrete affected by Alkali-Aggregate Reaction or RAA, reported by Stanton in 1940. The RAA has aroused attention in the context of Civil Engineering from the early 80, when they were reported consequences of his swelling effect in concrete structures, including cracking, failure and loss of serviceability. Despite the availability of experimental results the problem formulation still lacks refinement so that your solution remains doubtful. The numerical simulation is important resource for the assessment of damages in structures caused by the reaction, and their recoveries The tasks of support of this work were performed by means of the finite element approach, about orthotropic non-linear formulation, and, thermodynamic model of deformation by RAA. The results obtained revealed that the swelling effect of RAA induced decline of the mechanical performance of concrete by decreasing the margin of safety prior to the material failure. They showed that the temperature influences, exclusively, the kinetics of the reaction, so that the failure was the more precocious the higher the temperature of the solid mass of concrete
Resumo:
The vehicles are the main mobile sources of carbon monoxide (CO) and unburned hydrocarbons (HC) released into the atmosphere. In the last years the increment of the fleet of vehicles in the municipal district of Natal-RN it is contributing to the increase of the emissions of those pollutants. The study consisted of a statistical analysis of the emissions of CO and HC of a composed sample for 384 vehicles with mechanization Gasoline/CNG or Alcohol/Gasoline/CNG of the municipal district of Natal-RN. The tests were accomplished in vehicles submitted to Vehicular Safety's Inspection, in the facilities of INSPETRANS, Organism of Vehicular Inspection. An partial gases analyzer allowed to measure, for each vehicle, the levels of CO and HC in two conditions of rotation of the motor (900 and 2500 rpm). The statistical analysis accomplished through the STATISTICA software revealed a sensitive reduction in the efficiency of the converters catalytic after 6 years of use with emission average it is of 0,78% of CO and 156 (ppm) of HC, Which represents approximately 4 (four) times the amount of CO and the double of HC in comparison with the newest vehicles. The result of a Student s t-test, suggests strongly that the average of the emissions of HC (152 ppm), at 900 rpm, is 40% larger than at 2500 rpm, for the motor without load. This result reveals that the efficiency of the catalytic conversion is limited kinetically in low engine speeds. The Study also ends that when comparing the emissions of CO and HC considering the influence of the fuels, it was verified that although the emissions of CO starting from CNG are 62% smaller than arising from the gasoline, there are not significant differences among the emissions of HC originating from of CNG and of the gasoline. In synthesis, the results place the current criteria of vehicular inspection, for exhaust gases, in doubt, leading the creation of emission limits of pollutant more rigorous, because the efficiency of the converters catalytic is sensibly reduced starting from 6 years of use. It is also raised the possibility of modifications in the test conditions adopted by the current norms, specifically in the speed engine, have seen that in the condition without load the largest emission indexes were registered in slow march. That fact that allows to suggest the dismissal of the tests in high speed engine, reducing the time of inspection in half and generating economy of fuel
Resumo:
The search for alternative materials with lower density, reduction in heat transfer and propagation of noise associated with the ease of handling and application in concrete structures, represents an enormous challenge in the formulation and knowledge of the performance of self-compacting lightweight concrete, which has technology little known nationally, and appears on the international scene as an innovative material and alternative to conventional concrete. Based on these, this study set out to study self-compacting lightweight concrete made with two distinct grades of expanded clay associated with the addition of plasticizing/superplasticizers additives and mineral additions of metakaolin and bagasse ash of sugar cane. There is also an object of study, evaluation of pozzolanic activity of mineral admixtures and their influence on the durability characteristics of concrete. The rheological, physical, mechanical and microstructural analysis in this study served as basis in the classification of concretes autoadensáveis, targeting the national technical requirements for their classification in the category autoadensável and lightweight structural. The inclusion of mineral admixtures (metakaolin and bagasse ash of sugar cane), partial replacement of cement, pozzolanic activity and demonstrated maintenance of mechanical properties through the filler effect, a reduction of up to 76% of the nitrogen gas permeability in blend with 20% bagasse ash. All concretes had rheology (cohesion and consistency) suitable for self-adensability as well as strength and density inherent structural lightweight concrete without presenting phenomena of segregation and exudation
Resumo:
The need to build durable structures and resistant to harsh environments enabled the development of high strength concrete, these activities generate a high cement consumption, which implies factor in CO2 emissions. Often the desired strength is not achieved using only the cement composition. This study aims to evaluate the influence of pozzolans with the addition of metakaolin on the physical mechanics of high strength concrete comparing them with the standard formulation. Assays were performed to characterize the aggregates according to NBR 7211, evaluation of cement and coarse aggregate through the trials of petrography (NBR 15577-3/08) and alkali-aggregate reaction (NBR 15577-05/08). Specimens were fabricated according to NBR 5738-1/04 with additions of 0%, 4%, 6%, 8% and 10% of metakaolin for cement mortars CP V in the formulations. For evaluation of the concrete hardened in fresh state and scattering assays were performed and compressive strength in accordance with the NBR 7223/1992 and NBR 5739-8/94 respectively. The results of the characterization of aggregates showed good characteristics regarding size analysis and petrography, as well as potentially innocuous as the alkali-aggregate reaction. As to the test of resistance to compression, all the formulations with the addition of metakaolin showed higher value at 28 days of disruption compared with the standard formulation. These results present an alternative to reduce CO2 emissions, and improvements in the quality and durability of concrete, because the fine particle size of metakaolin provides an optimal compression of the mass directly influencing the strength and rheology of the dough
Resumo:
Milk from different animals can be used for dairy production. Yoghurt is a popular fermented milk product and considered to be one of the greatest importance in terms of consumer acceptance and consumption. The present research deals with the production of strawberry set-type yoghurt by mixing goat and buffalo s milk and it has the objective of taking advantage of the intrinsic characteristics of each milk to produce a final product with desirable attributes. It was conducted by analyzing five experimental groups with different proportions of goat and buffalo s milk: C 100% goat s milk; 7C3B - 70% goat s milk and 30% buffalo s milk, 5C5B - 50% goat s milk and 50% buffalo s milk, 3C7B 30% goat s milk and 70% buffalo s milk; B - 100% buffalo s milk. Each group was evaluated for total solids content and the acidification profile was monitored every 30 minutes by pH analysis. The yoghurt samples were analyzed for physical-chemical (pH, acidity, protein, fat, total and reducing sugars, ash and total solids), rheological (syneresis and viscosity) and sensory characteristics (appearance, odor, consistency and flavour). Samples with higher percentual of bubaline milk reached Vm faster, but the time necessary for pH 4.6 (Te) were similar between groups. Statistical differences (p<0.05) were observed for fat and total solids content of yoghurt, with superior values for groups higher proportions of buffalo s milk. The parameters of behavior reached by the model of Ostwald of Waale pointed yoghurt samples as non-Newtonian and pseudoplastic fluids. Yoghurt made only with goat s milk (C) had higher values (p<0.05) for syneresis, which can be explained by its fragile coagulum. Additionally, this group also had the lowest sensory scores for the attributes consistence and taste, while bubaline yoghurt (B) obtained the best acceptance indexes for all of the appraised parameters
Resumo:
This work aims to determine a better methodology to help predicting some operational parameters to a new design of mixer-settler on treating wastewater produced by petroleum industry, called MDIF (Misturador-Decantador à Inversão de Fases/ Mixer-Settler based on Phase Inversion MSPI). The data from this research were obtained from the wastewater treatment unit, called MSPI-TU, installed on a wastewater treatment plant (WTP) of PETROBRAS/UO-RNCE. The importance in determining the better methodology to predict the results of separation and extraction efficiency of the equipment, contributes significantly to determine the optimum operating variables for the control of the unit. The study was based on a comparison among the experimental efficiency (E) obtained by operating MSPI-TU, the efficiency obtained by experimental design equation (Eplan) from the software Statistica Experimental Design® (version 7.0), and the other obtained from a modeling equation based on a dimensional analysis (Ecalc). The results shows that the experimental design equation gives a good prediction of the unit efficiencies with better data reliability, regarding to the condition before a run operation. The average deviation between the proposed by statistic planning model equation and experimental data was 0.13%. On the other hand, the efficiency calculated by the equation which represents the dimensional analysis, may result on important relative deviations (up 70%). Thus, the experimental design is confirmed as a reliable tool, with regard the experimental data processing of the MSPI-TU
Resumo:
A technological alternative for the correct disposal of tires is the use in the construction of embankment with soil and shredded tires. The use of waste tires in tropical soils requires prior knowledge of the properties and limitations of these materials. In this work, the results of an experimental program was devised to characterize the behavior of mixtures of waste tires and a lateritic soil. The residue used in this study is classified as tire buffings with an average size of 1.4 mm. The laboratory program included testing of particle size analysis, Atterberg limits, compaction, direct shear tests, permeability and confined compression tests with pure soil, pure tire and the mixtures. Proportions of 0% (pure soil), 10%, 20%, 40%, 50 % and 100% (pure tire) by weight were used. For the confining stress levels used in the study, the presence of tire residue provided a considerable increase in shear strength of the mixture. The maximum shear strength was obtained for a residue content of 40% by weight. Permeability tests on samples of waste under a confining stress of 100 kPa showed that the permeability increases significantly with increasing residue content until a residue content of 20%. The increase in permeability after that value showed to be negligible. Confined compression tests showed that the soil mixed with tire residue becomes more compressible than the pure soil. The secant constrained modulus (Msec) for the same vertical stress decreases with increasing percentage of residue.
Resumo:
In Natal/RN, 68% of the population uses some kind of individual system for their domestic sewers treatment, being that the most used it is septic tank, followed by sumidouro. Every treatment system of sewers, usually used, generates a by-product denominated sludge. That residue presents some components, in its constitution, undesirable under the environmental and sanitary point of view. In such case, to assure that the system treatment has satisfactory results, it is necessary to do the adjusted disposition of the sludge sewage. Several countries are looking for technical alternatives for the use and disposition of residues. Under technical and environmental conditions appropriate, these materials can be used, decreasing the consumption of the natural resources and the treatment need, storage or elimination of the wastes, what decrease the risks created. Some of the alternatives of recycling of the sludge sewage are: the application in the agriculture, in the production of energy and as raw material in the civil construction. This study evaluated asphalt mixtures behavior that partially substituted conventional aggregates by septic tank sludge. The septic tank sludge gave origin to two raw materials called raw sludge and sludge ash. The raw sludge was put as a small aggregate and the sludge ash as filler. In the first experiment it was made a comparison between the mixture with conventional aggregates and the mixtures that replaced sand by raw sludge in the proportions from 5% to 40%. In the second experiment, it was made comparison between mixtures with 1%, 2% and 3% of sludge ash and cement. The stages developed along the study were: physical characterization of the conventional materials; physical, chemistry, thermal, mineralogical characterizations and analysis of environmental risk of the raw sludge; physical characterization and analysis of environmental risk of the sludge ash; analysis of the mixtures performance through its volumetric and mechanical characteristics; forecast of the mixtures susceptibility in the moisture presence. For the grain size composition used and with the percentage asphalt adopted, the mixtures with up to 7,5% of raw sludge in his composition attend to the National Department of Transports Infrastructure (DNIT) specifications. However, in agreement with the mixtures susceptibility in the moisture presence, the mixtures with addition of raw sludge don't present satisfactory acting. In such case, they could be used in arid and semi-arid areas. The raw sludge application in mixtures increased their voids volume and their stability. However, it damaged mixtures adhesiveness. Mixtures with sludge ash and with cement presented similar behavior. However, mixtures with sludge ash presented a better performance than mixtures with cement as for their stability and their tensile strength ratio. The mixture with 1% of sludge ash is better. The wastes studied don't represent environmental risk
Resumo:
This work is part of an effort of consolidation of a daily search for powder technology at the Department of Physics of the Universidade Federal do Rio Grande do Norte. This work objective the study and development of new ceramic materials from raw materials abundant at the region. For this, were studied ceramic mixtures of powders from diatomite-titania to aiming at a new ceramic material from powder technology. The experimental work involved a characterization of ceramic powders from a diatomite-titania mixture. The powders obtained were pressed and then parameters like variation of mass, linear shrinkage, activation energy and the mechanism of sintering are studied in function of the time and temperature of sintering, beyond microstructural analysis. The obtained results allow us estimate the optimizing of sintering conditions of this material
Resumo:
Were synthesized ferrites of NiZn on systems Ni0,5Zn0,5Fe2O4, the precursors citrate method. The decomposition of the precursors was studied by thermogravimetric analysis and spectroscopy in the infrared region, the temperature of 350°C/3h. The evolution of the phases formed after calcinations at 350ºC/3h, 600, 1000 and 1100ºC/2h was accompanied by X-ray diffraction using the Rietveld refinement method for better identification os structures formed. Was observed for samples calcined at different temperatures increased crystallinity with increasing calcination temperature, being observed for the samples calcined at 900 and 1100 º C/2h was the precipitation of a secondary phase, the phase hematite. The ferrocarbonila of industrial origin was analyzed by X-ray diffraction and Rietveld for the identification of its structure. The carbonyl iron was added NiZn ferrite calcined at 350ºC/3h, 600, 900, 1000 and 1100ºC/2h to the formation of hybrid mixtures. They were then analyzed by Xray diffraction and Rietveld. The NiZn ferrite and ferrocarbonila as well as the hybrid mixtures were subjected to analysis of scanning electron microscopy, magnetic measurements and reflectivity. The magnetic measurements indicated that the ferrite, the ferrocarbonila, as well as hybrid mixtures showed characteristics of soft magnetic material. The addition of ferrocarbonila in all compositions showed an increase in the results of magnetic measurements and reflectivity. Best result was observed in the increase of the magnetization for the hybrid mixture of Ferrocarbonila / ferrite of NiZn calcined at 600ºC/2h. The mixture Ferrocarbonila / ferrite calcined 1000°C/2h presented better absorption of electromagnetic radiation in the microwave
Resumo:
The present work was to carry out a study on the adsorption of hydrogen sulfide (H2S) in arrays synthesized from a commercial clay mineral formed by a mixture of dolomite and quartz. To produce the ion exchange matrix were made using aqueous solutions of salts of cobalt II chloride hexahydrate (CoCl2.6H2O) II cadmium nitrate tetrahydrate (Cd (NO3)2.4H2O) I mercuric chloride (HgCl) nitrate and chromium III pentahydrate (Cr (NO3)3.5H2O). The arrays were subjected to hydrogen sulphide gas passage for one hour. To check the amount of gas adsorbed was used gravimetric process. The best result was in the adsorption matrix doped with cadmium and the solution retained for a longer time than the largest amount of H2S was the cobalt matrix. The matrix unmodified exhibited poor adsorption capacity. The characterization of the matrices were used XRD, XRF and IV. Mother with cadmium showed a high capacity in ion exchange, because the percentage of cadmium increased from 0% to 81.38% by replacing atoms of calcium and silicon which increased from 96.54% to 17.56% and 15, 72% to 0.32%, respectively, but also the best performance in adsorption of H2S adsorbing 11.89507 mg per gram of matrix
Resumo:
The piles are one of the most important types of solution adopted for the foundation of buildings. They are responsible for transmitting to the soil in deepe r and resistant layers loads from structures. The interaction of the foundation element with the soil is a very important variable, making indispensable your domain in order to determine the strength of the assembly and establish design criteria for each c ase of application of the pile. In this research analyzes were performed f rom experiments load tests for precast concrete piles and inve stigations of soil of type SPT, a study was performed for obtaining the ultimate load capacity of the foundation through methods extrapolation of load - settlement curve , semi - empirical and theoretic . After that, were realized comparisons between the different methods used for two types of soil a granular behavior and other cohesive. For obtaining soil paramet ers to be used i n the methods were established empirical correlations with the standard penetration number (NSPT). The charge - settlement curves of the piles are also analyzed. In the face of established comparisons was indicated the most reliable semiempirical method Déco urt - Quaresma as the most reliable for estimating the tensile strength for granular and cohesive soils. Meanwhile, among the methods studied extrapolation is recommended method of Van der Veen as the most appropriate for predicting the tensile strength.
Resumo:
Porous structures are being widely investigated for use in biomedical implants, aiming to mechanically integrate and functionally the implant inside the bone tissue. Moreover, this structure is also important for drugs that can be stored and can induce and accelerate the process of osseointegration. With the purpose to investigate this effect, Ti, Nb and Sn metal powders, were sintered by plasma using a hollow cathode discharge. Sintering was performed in argon plasma set at 4 mbar pressure and temperatures of 500 ° C, 600 ° C and 700 ° C. Samples were also sintered in the electrical resistance furnace at 1200 ° C in order to compare plasma sintering with the conventional method. It was observed that plasma samples sintered with the hollow cathode configuration showed a gradient in porosity, while the samples sintered in the resistive furnace did not. Furthermore, differences in the microstructure of the samples were found, were a surface with higher porosity and ales porous core were obtained at different temperatures. The percolation profile of distilled water and the chemical compositions of the porous layers of the plasma treated samples were the main results obtained. Based on these results, we can conclude that this structure is particularly important for application in the biomedical field such as scaffolds for drug delivery and implants