54 resultados para Cinzas volantes conformes
Resumo:
The petroleum industry, in consequence of an intense activity of exploration and production, is responsible by great part of the generation of residues, which are considered toxic and pollutants to the environment. Among these, the oil sludge is found produced during the production, transportation and refine phases. This work had the purpose to develop a process to recovery the oil present in oil sludge, in order to use the recovered oil as fuel or return it to the refining plant. From the preliminary tests, were identified the most important independent variables, like: temperature, contact time, solvents and acid volumes. Initially, a series of parameters to characterize the oil sludge was determined to characterize its. A special extractor was projected to work with oily waste. Two experimental designs were applied: fractional factorial and Doehlert. The tests were carried out in batch process to the conditions of the experimental designs applied. The efficiency obtained in the oil extraction process was 70%, in average. Oil sludge is composed of 36,2% of oil, 16,8% of ash, 40% of water and 7% of volatile constituents. However, the statistical analysis showed that the quadratic model was not well fitted to the process with a relative low determination coefficient (60,6%). This occurred due to the complexity of the oil sludge. To obtain a model able to represent the experiments, the mathematical model was used, the so called artificial neural networks (RNA), which was generated, initially, with 2, 4, 5, 6, 7 and 8 neurons in the hidden layer, 64 experimental results and 10000 presentations (interactions). Lesser dispersions were verified between the experimental and calculated values using 4 neurons, regarding the proportion of experimental points and estimated parameters. The analysis of the average deviations of the test divided by the respective training showed up that 2150 presentations resulted in the best value parameters. For the new model, the determination coefficient was 87,5%, which is quite satisfactory for the studied system
Resumo:
Milk from different animals can be used for dairy production. Yoghurt is a popular fermented milk product and considered to be one of the greatest importance in terms of consumer acceptance and consumption. The present research deals with the production of strawberry set-type yoghurt by mixing goat and buffalo s milk and it has the objective of taking advantage of the intrinsic characteristics of each milk to produce a final product with desirable attributes. It was conducted by analyzing five experimental groups with different proportions of goat and buffalo s milk: C 100% goat s milk; 7C3B - 70% goat s milk and 30% buffalo s milk, 5C5B - 50% goat s milk and 50% buffalo s milk, 3C7B 30% goat s milk and 70% buffalo s milk; B - 100% buffalo s milk. Each group was evaluated for total solids content and the acidification profile was monitored every 30 minutes by pH analysis. The yoghurt samples were analyzed for physical-chemical (pH, acidity, protein, fat, total and reducing sugars, ash and total solids), rheological (syneresis and viscosity) and sensory characteristics (appearance, odor, consistency and flavour). Samples with higher percentual of bubaline milk reached Vm faster, but the time necessary for pH 4.6 (Te) were similar between groups. Statistical differences (p<0.05) were observed for fat and total solids content of yoghurt, with superior values for groups higher proportions of buffalo s milk. The parameters of behavior reached by the model of Ostwald of Waale pointed yoghurt samples as non-Newtonian and pseudoplastic fluids. Yoghurt made only with goat s milk (C) had higher values (p<0.05) for syneresis, which can be explained by its fragile coagulum. Additionally, this group also had the lowest sensory scores for the attributes consistence and taste, while bubaline yoghurt (B) obtained the best acceptance indexes for all of the appraised parameters
Resumo:
Global warming due to Greenhouse Gases (GHG) emissions, especially CO2, has been identified as one of the major problems of the twenty-first century, considering the consequences that could represent to planet. Currently, biological processes have been mentioned as a possible solution, especially CO2 biofixation due to association microalgae growth. This strategy has been emphasized as in addition to CO2 mitigation, occurs the production of biomass rich in compounds of high added value. The Microalgae show high photosynthetic capacity and growth rate higher than the superior plants, doubling its biomass in one day. Its culture does not show seasons, they grow in salt water and do not require irrigation, herbicides or pesticides. The lipid content of these microorganisms, depending on the species, may range from 10 to 70% of its dry weight, reaching 90% under certain culture conditions. Studies indicate that the most effective method to promote increased production of lipids in microalgae is to induce stress by limiting nitrogen content in the culture medium. These evidences justify research continuing the production of biofuels from microalgae. In this paper, it was studied the strategy of increasing the production of lipids in microalgae I. galbana with programmed nutritional stress, due to nitrogen limitation. The physiological responses of microalgae, grown in f / 2 with different concentrations of nitrogen (N: P 15,0-control, N: 5,0 P and N: P 2,5) were monitored. During exponential phase, results showed invariability in the studied conditions. However the cultures subjected to stress in stationary phase, showed lower biomass yields. There was an increase of 32,5% in carbohydrate content and 87.68% in lipids content at N: P ratio of 5,0 and an average decrease of 65% in protein content at N: P ratios of 5, 0 and 2.5. There were no significant variations in ash content, independently of cultivation and growth phase. Despite the limitation of biomass production in cultures with N: P smaller ratios, the increase of lipid accumulation highest lipids yields were observed as compared to the control culture. Given the increased concentration of lipids associated to stress, this study suggests the use of microalgae Isochrysis galbana as an alternative raw material for biofuel production
Resumo:
This work studies the fabrication of spaghetti through the process at high temperatures through the use of flour added to flour and flaxseed meal, with the aim of evaluating the final product quality and estimate the cost of production. The values of moisture, ash, protein, wet gluten, gluten index, falling number and grain of flour and mixtures to test to be the possible use in mass manufacturing and technological criteria for compliance with current legislation. Spaghetti noodles type were manufactured by adding 10% and 20% flour and 10% and 20% flaxseed meal with performance of physical-chemical, sensory and rheological properties of the products. Further analysis was performed on the product acceptance and estimation of production cost in order to create subsidies to enable the introduction of products with greater acceptance and economic viability in the market by the food industry. On the rheology of the product test was cooking the pasta, specifying the volume increase, cooking time and percentage of solid waste. In the sensory evaluation was carried out the triangular test of product differentiation with 50 trained judges and acceptance testing by a hedonic scale with evaluation of the aspects color, taste, smell and texture. In defining the sensory profile of the product was performed with ADQ 9 judges recruited and trained at the factory, using unstructured scale of 9 cm, assessing the attributes of flavor of wheat, flax flavor, consistency, texture of raw pasta, raw pasta color and color of cooked pasta. The greater acceptance of product quality was good and the pasta with 20% flour, 10% followed by the full product, 10% and 20% flaxseed characterized the average quality of the criterion of loss analysis of solids, together with mass full commercial testing. In assessing the estimated cost of production, the two products more technologically feasible and acceptable (20% whole and 10% flaxseed) were evaluated in high temperature processes. With total cost of R $ 4,872.5 / 1,000 kg and R $ 5,354.9 / 1,000 kg respectively, the difference was related to the addition of lower inputs and higher added value in the market, flour and flaxseed meal. The comparative analysis of cases was confirmed the reduction in production time (10h), more uniform product to the drying process at high temperature compared to conventional
Resumo:
The bio-oil obtained from the pyrolysis of biomass has appeared as inter-esting alternative to replace fossil fuels. The aim of this work is to evaluate the influence of temperature on the yield of products originating from the pyrolysis process of the powder obtained from the dried twigs of avelós (Euphorbia tirucalli), using a rotating cylinder reactor in laboratory scale. The biomass was treated and characterized by: CHNS, moisture, volatiles, fixed carbon and ashes, as well as evaluation of lignin, cellulose and hemicellulose, besides other instrumental techniques such as: FTIR, TG/DTG, DRX, FRX and MEV. The activation energy was evaluated in non-isothemichal mode with heating rates of 5 and 10 oC/min. The obtained results showed biomass as feedstock with potential for biofuel production, because presents a high organic matter content (78,3%) and fixed-carbon (7,11%). The activation energy required for the degradation of biomass ranged between 232,92 392,84 kJ/mol, in the temperature range studied and heating rate of 5 and 10°C/min. In the pyrolysis process, the influence of the reaction temperature was studied (350-520 ° C), keeping constant the other variables, such as, the flow rate of carrier gas, the centrifugal speed for the bio-oil condensationa, the biomass flow and the rotation of the reactor. The maximum yield of bio-oil was obtained in the temperature of 450°C. In this temperature, the results achieved where: content of bio-oil 8,12%; char 32,7%; non-condensed gas 35,4%; losts 23,8%; gross calorific value 3,43MJ/kg; pH 4,93 and viscosity 1,5cP. The chromatographic analysis of the bio-oil produced under these conditions shows mainly the presence of phenol (17,71%), methylciclopentenone (10,56%) and dimethylciclopentenone (7,76%)
Resumo:
The need for new sources of energy and the concern about the environment have pushed the search for renewable energy sources such as ethanol. The use of lignocellulosic biomass as substrate appears as an important alternative because of the abundance of this raw material and for it does not compete with food production. However, the process still meets difficulties of implementation, including the cost for production of enzymes that degrade cellulose to fermentable sugars. The aim of this study was to evaluate the behavior of the species of cactus pear Opuntia ficus indica and Nopalea cochenillifera, commonly found in northeastern Brazil, as raw materials for the production of: 1) cellulosic ethanol by simultaneous saccharification and fermentation (SSF) process, using two different strains of Saccharomyces cerevisiae (PE-2 and LNF CA-11), and 2) cellulolytic enzymes by semi-solid state fermentation (SSSF) using the filamentous fungus Penicillium chrysogenum. Before alcoholic fermentation process, the material was conditioned and pretreated by three different strategies: alkaline hydrogen peroxide, alkaline using NaOH and acid using H2SO4 followed by alkaline delignification with NaOH. Analysis of composition, crystallinity and enzymatic digestibility were carried out with the material before and after pretreatment. In addition, scanning electron microscopy images were used to compare qualitatively the material and observe the effects of pretreatments. An experimental design 2² with triplicate at the central point was used to evaluate the influence of temperature (30, 40 and 45 °C) and the initial charge of substrate (3, 4 and 5% cellulose) in the SSF process using the material obtained through the best condition and testing both strains of S. cerevisiae, one of them flocculent (LNF CA-11). For cellulase production, the filamentous fungus P. chrysogenum was tested with N. cochenillifera in the raw condition (without pretreatment) and pretrated hydrothermically, varying the pH of the fermentative medium (3, 5 and 7). The characterization of cactus pear resulted in 31.55% cellulose, 17.12% hemicellulose and 10.25% lignin for N. cochenillifera and 34.86% cellulose, 19.97% hemicellulose and 15.72% lignin for O. ficus indica. It has also been determined, to N. cochenillifera and O. ficus indica, the content of pectin (5.44% and 5.55% of calcium pectate, respectively), extractives (26.90% and 9.69%, respectively) and ashes (5.40% and 5.95%). Pretreatment using alkaline hydrogen peroxide resulted in the best cellulose recovery results (86.16% for N. cochenillifera and 93.59% for O. ficus indica) and delignification (48.79% and 23.84% for N. cochenillifera and O. ficus indica, respectively). This pretreatment was also the only one which did not increase the crystallinity index of the samples, in the case of O. ficus indica. However, when analyzing the enzymatic digestibility of cellulose, alkali pretreatment was the one which showed the best yields and therefore it was chosen for the tests in SSF. The experiments showed higher yield of conversion of cellulose to ethanol by PE-2 strain using the pretreated N. cochenillifera (93.81%) at 40 °C using 4% initial charge of cellulose. N. cochenillifera gave better yields than O. ficus indica and PE-2 strain showed better performance than CA-11. N. cochenillifera proved to be a substrate that can be used in the SSSF for enzymes production, reaching values of 1.00 U/g of CMCase and 0.85 FPU/g. The pretreatment was not effective to increase the enzymatic activity values
Resumo:
The bio-oil obtained from the pyrolysis of biomass has appeared as inter-esting alternative to replace fossil fuels. The aim of this work is to evaluate the influence of temperature on the yield of products originating from the pyrolysis process of the powder obtained from the dried twigs of avelós (Euphorbia tirucalli), using a rotating cylinder reactor in laboratory scale. The biomass was treated and characterized by: CHNS, moisture, volatiles, fixed carbon and ashes, as well as evaluation of lignin, cellulose and hemicellulose, besides other instrumental techniques such as: FTIR, TG/DTG, DRX, FRX and MEV. The activation energy was evaluated in non-isothemichal mode with heating rates of 5 and 10 oC/min. The obtained results showed biomass as feedstock with potential for biofuel production, because presents a high organic matter content (78,3%) and fixed-carbon (7,11%). The activation energy required for the degradation of biomass ranged between 232,92 392,84 kJ/mol, in the temperature range studied and heating rate of 5 and 10°C/min. In the pyrolysis process, the influence of the reaction temperature was studied (350-520 ° C), keeping constant the other variables, such as, the flow rate of carrier gas, the centrifugal speed for the bio-oil condensationa, the biomass flow and the rotation of the reactor. The maximum yield of bio-oil was obtained in the temperature of 450°C. In this temperature, the results achieved where: content of bio-oil 8,12%; char 32,7%; non-condensed gas 35,4%; losts 23,8%; gross calorific value 3,43MJ/kg; pH 4,93 and viscosity 1,5cP. The chromatographic analysis of the bio-oil produced under these conditions shows mainly the presence of phenol (17,71%), methylciclopentenone (10,56%) and dimethylciclopentenone (7,76%)
Resumo:
Despite the relatively organized cashew (Anacardium occidentale L.) productive chain and the number of cashew derivatives found in the market, it is estimated that over 90% of the cashew peduncle is wasted. A possible strategy for a better commercial exploitation of this agroindustrial commodity would be the production of spray dried cashew pulp. Thus, this paper approaches the yellow cashew pulp spray drying process and the final product evaluation. Based on that, the shelf life of the spray dried cashew pulp packed in different packaging was evaluated. Drying was conducted in two drying temperatures (140 °C to 150 °C) and two concentrations of Arabic gum (AG, 15% and 25%), which summed four experimental groups. The drying performance was evaluated as well as the physicochemical characteristics (moisture, water activity, total soluble solids, pH, density, solubility, particle diameter, hygroscopicity, degree of caking, color, scanning electronic microscopy and X-ray diffraction), composition (protein, ash, fat and sugars) and bioactive and functional value (total phenolic compounds, carotenoids, ascorbic acid and antioxidant activity) of the final products. Results showed spray drying efficiency higher than 65% for all experiments, mainly for the C4 group (150 °C and 25% AG) which reached efficiency of 93.4%. It was also observed high solubility (94.7% to 97.9%) and the groups with lower hygroscopicity (5.8% and 6.5%) were those with the highest proportion of drying coadjuvant. The particle diameters ranged between 14.7 μm and 30.2 μm and increased with the proportion of AG. When comparing the product before and after spray drying, the drying impact was evident. However, despite the observed losses, dried yellow cashew showed high phenolic concentration (from 235.9 to 380.4 mg GAE eq / 100 g DM), carotenoids between 0.22 and 0.49 mg/100 g DM and remarkable ascorbic acid levels (852.4 to 1346.2 mg/100 g DM), in addition to antioxidant activity ranging from 12.9 to 16.4 μmol TE/ g DM. The shelf life study revealed decreased phenolic content over time associated to a slight water activity increase. Overall, our results unveil the technological and bioactive potential of dried yellow cashew as a functional ingredient to be used in food formulations or as a ready-to-use product. The technological approach presented here can serve as an efficient strategy for a rational use of the cashew apple, avoiding its current underutilization
Resumo:
Recently, global demand for ethanol fuel has expanded very rapidly, and this should further increase in the near future, almost all ethanol fuel is produced by fermentation of sucrose or glucose in Brazil and produced by corn in the USA, but these raw materials will not be enough to satisfy international demand. The aim of this work was studied the ethanol production from cashew apple juice. A commercial strain of Saccharomyces cerevisiae was used for the production of ethanol by fermentation of cashew apple juice. Growth kinetics and ethanol productivity were calculated for batch fermentation with different initial sugar (glucose + fructose) concentration (from 24.4 to 103.1 g.L-1). Maximal ethanol, cell and glycerol concentrations (44.4 g.L-1, 17.17 g.L-1, 6.4 g.L-1, respectively) were obtained when 103.1 g.L-1 of initial sugar concentration were used, respectively. Ethanol yield (YP/S) was calculated as 0.49 g (g glucose + fructose)-1. Pretreatment of cashew apple bagasse (CAB) with dilute sulfuric acid was investigated and evaluated some factors such as sulfuric acid concentration, solid concentration and time of pretreatment at 121°C. The maximum glucose yield (162.9 mg/gCAB) was obtained by the hydrolysis with H2SO4 0.6 mol.L-1 at 121°C for 15 min. Hydrolysate, containing 16 ± 2.0 g.L-1 of glucose, was used as fermentation medium for ethanol production by S. cerevisiae and obtained a ethanol concentration of 10.0 g.L-1 after 4 with a yield and productivity of 0.48 g (g glucose)-1 and 1.43 g.L-1.h-1, respectively. The enzymatic hydrolysis of cashew apple bagasse treated with diluted acid (CAB-H) and alkali (CAB-OH) was studied and to evaluate its fermentation to ethanol using S. cerevisiae. Glucose conversion of 82 ± 2 mg per g CAB-H and 730 ± 20 mg per g CAB-OH was obtained when was used 2% (w/v) of solid and loading enzymatic of 30 FPU/g bagasse at 45 °C. Ethanol concentration and productivity was achieved of 20.0 ± 0.2 g.L-1 and 3.33 g.L-1.h-1, respectively when using CAB-OH hydrolyzate (initial glucose concentration of 52.4 g.L-1). For CAB-H hydrolyzate (initial glucose concentration of 17.4 g.L-1), ethanol concentration and productivity was 8.2 ± 0.1 g.L-1 and 2.7 g.L-1.h-1, respectively. Hydrolyzates fermentation resulted in an ethanol yield of 0.38 g/g glucose and 0.47 g/g glucose, with pretreated CABOH and CAB-H, respectively. The potential of cashew apple bagasse as a source of sugars for ethanol production by Kluyveromyces marxianus CE025 was evaluated too in this work. First, the yeast CE025 was preliminary cultivated in a synthetic medium containing glucose and xylose. Results showed that it was able to produce ethanol and xylitol at pH 4.5. Next, cashew apple bagasse hydrolysate (CABH) was prepared by a diluted sulfuric acid pre-treatment. The fermentation of CABH was conducted at pH 4.5 in a batch-reactor, and only ethanol was produced by K. marxianus CE025. The influence of the temperature in the kinetic parameters was evaluated and best results of ethanol production (12.36 ± 0.06 g.L-1) was achieved at 30 ºC, which is also the optimum temperature for the formation of biomass and the ethanol with a volumetric production rate of 0.25 ± 0.01 g.L-1.h-1 and an ethanol yield of 0.42 ± 0.01 g/g glucose. The results of this study point out the potential of the cashew apple bagasse hydrolysate as a new source of sugars to produce ethanol by S. cerevisiae and K. marxianus CE025. With these results, conclude that the use of cashew apple juice and cashew apple bagasse as substrate for ethanol production will bring economic benefits to the process, because it is a low cost substrate and also solve a disposal problem, adding value to the chain and cashew nut production
Resumo:
The objective of this study was to produce biofuels (bio-oil and gas) from the thermal treatment of sewage sludge in rotating cylinder, aiming industrial applications. The biomass was characterized by immediate and instrumental analysis (elemental analysis, scanning electron microscopy - SEM, X-ray diffraction, infrared spectroscopy and ICP-OES). A kinetic study on non-stationary regime was done to calculate the activation energy by Thermal Gravimetric Analysis evaluating thermochemical and thermocatalytic process of sludge, the latter being in the presence of USY zeolite. As expected, the activation energy evaluated by the mathematical model "Model-free kinetics" applying techniques isoconversionais was lowest for the catalytic tests (57.9 to 108.9 kJ/mol in the range of biomass conversion of 40 to 80%). The pyrolytic plant at a laboratory scale reactor consists of a rotating cylinder whose length is 100 cm with capable of processing up to 1 kg biomass/h. In the process of pyrolysis thermochemical were studied following parameters: temperature of reaction (500 to 600 ° C), flow rate of carrier gas (50 to 200 mL/min), frequency of rotation of centrifugation for condensation of bio-oil (20 to 30 Hz) and flow of biomass (4 and 22 g/min). Products obtained during the process (pyrolytic liquid, coal and gas) were characterized by classical and instrumental analytical techniques. The maximum yield of liquid pyrolytic was approximately 10.5% obtained in the conditions of temperature of 500 °C, centrifugation speed of 20 Hz, an inert gas flow of 200 mL/min and feeding of biomass 22 g/min. The highest yield obtained for the gas phase was 23.3% for the temperature of 600 °C, flow rate of 200 mL/min inert, frequency of rotation of the column of vapor condensation 30 Hz and flow of biomass of 22 g/min. The non-oxygenated aliphatic hydrocarbons were found in greater proportion in the bio-oil (55%) followed by aliphatic oxygenated (27%). The bio-oil had the following characteristics: pH 6.81, density between 1.05 and 1.09 g/mL, viscosity between 2.5 and 3.1 cSt and highest heating value between 16.91 and 17.85 MJ/ kg. The main components in the gas phase were: H2, CO, CO2 and CH4. Hydrogen was the main constituent of the gas mixture, with a yield of about 46.2% for a temperature of 600 ° C. Among the hydrocarbons formed, methane was found in higher yield (16.6%) for the temperature 520 oC. The solid phase obtained showed a high ash content (70%) due to the abundant presence of metals in coal, in particular iron, which was also present in bio-oil with a rate of 0.068% in the test performed at a temperature of 500 oC.
Resumo:
The Brazilian caatinga is characterized by low annual rainfall and arid soils. Several cactaceae, either native or adapted species, grow in this semi-arid region, including the prickly pear (Opuntia fícus indica) and facheiro ((Philosocereus pachycladus Ritter) which produce underexploited edible fruits. In addition to these species, the algaroba is a leguminous with little studied technological applications and bioactive potential so far. Therefore, this research aims to investigate the physicochemical, bioactive and functional attributes of the prickly pear and facheiro fruit pulps and the algaroba flour. Specifically, this study approaches the physicochemical characterization, total phenolic compounds (TPC) and the betalain identification and quantification by HPLC-DAD-ESI-MS. It is also investigated the DPPH antioxidant capacity and the antienzymatic activities against alpha-amylase and alphaglucosidase of water and ethanolic extracts of these food material. In order to address their potential to be used as food ingredients, juice blends prepared with mixtures of cajá and prickly pear, biofilms with facheiro and cereal bars with algaroba flour were elaborated and analyzed. The prickly pear fruits presented low acidity and high sugar content when compared to facheiro. The Philosocereus pachycladus Ritter fruits had higher protein and ash content, but the algaroba flour was the species with higher protein and sugar content among all. The algaroba flour also presented outstanding food fiber content, which reveals its potentiality to be used as a natural intestinal regulator. The TPC of water and ethanol extracts ranged from 3.87 to 16.21 mg GAE/100g for algaroba flour, 79.24 to 110.20 GAE/ 100g for prickly pear and 412.23 to 539.14 mg GAE/100g for facheiro. The 70% (w/v) ethanol extract reached the highest DPPH antioxidant activity, which was linearly correlated to its high TPC content. In regard to the enzymatic inhibitory activities, the best performance was observed for the prickly pear extracts which presented a moderate inhibition for both investigated enzymes, but interestingly, no alpha-glucosidase inhibition was observed for facheiro extracts. This work shows, for the first time in the literature, the functional attributes of facheiro fruits, as well as the presence of betacianins and isobetanin in the pulp of this exotic fruit. When it comes to the food products developed here, the sensory attributes that better described the juice blend cajá-prickly pear were sweetness, acidity, color yellow-orange, body, turbidity and cajá flavor. The discriminative test applied for cereal bars produced with and without algaroba revealed that the texture was the only sensory attribute that differed (p<0.05) between these two samples. It was also observed that the addition of facheiro extracts did not influence the visual characteristics of the biofilms. Overall, this work unveils the physicochemical and bioactive attributes of these commercial and technologically underexploited species widely found in the Brazilian caatinga and presents alternatives for their rational use
Resumo:
The objective of this study was to evaluate the quality of housing and the physical and chemical characteristics of meat from sheep raised on pasture Brachiaria brizantha and Panicum maximum. The experiment was conducted in the physical area of the Study Group on Forage (GEFOR), located in the Academic Unit Specialized in Agricultural Sciences - Federal University of Rio Grande do Norte - UFRN in Macaíba, RN, Brazil. We used 32 lambs SPRD, obtained from herds in the state, with liveweight (LW) of 24.5 kg were assigned randomly to four treatments consisting of tropical grasses, two cultivars of Brachiaria brizantha, Marandu and Piatã, and two of Panicum maximum, Aruana and Massai. The experimental area was 2.88 ha, divided into 4 paddocks of 0.72 ha, where each picket consisted of a farm and was divided into six plots of 0.12 ha, where the animals remained under rotational grazing. The period of adaptation to the pickets was seven days. At the beginning of the experiment the animals were weighed, identified with plastic earrings and necklaces colored according to the treatment, and treated against. The lambs were loose in the paddock at 8 am and collected at 16 hours, which returned to collective pens. During the time of grazing animals had free access to mineral supplement with monensin Ovinofós ® and water. Before entering the paddocks of pasture were sampled to characterize the chemical composition. Every seven days occurred at weighing, with fasting, to monitor the weight development. Cultivars Marandu, Aruana, Piatã and Massai were grazed for 133, 129, 143 and 142 days, respectively, until the lambs reach slaughter weight. Arriving at 32 kg lambs were evaluated subjectively for body condition score by, passed through fasting period, diet and water for 16 hours were slaughtered. Measurements were made in the inner and outer casings in addition to subjective evaluations regarding muscling, finish and quantity of pelvic-renal fat, then each was divided longitudinally into two half-carcases and cuts were made in the commercial left half, and after heavy calculated their income. Between the 12th and 13th thoracic vertebrae, was performed a cut to expose the cross section of the Longissimus dorsi, which was drawn on the rib eye area (REA) in transparent film. Fat thickness and extent of AOL GR were determined using a caliper. A tissue composition was determined by dissection of the legs. Analyzes were performed physical (color, cooking loss and shear force) and chemical composition of meat (moisture, ash, protein and lipids) in Longissimus dorsi muscle. Grazing tropical grass Brachiaria brizantha cvs. Marandu and Piatã and Panicum maximum cvs. Aruana and Massai can be used for lambs SRPD in the rainy season, because not alter the physico-chemical and chemical composition of meat
Resumo:
This study aims to determine the amount of nutrients and toxic elements in aquatic macrophytes of species Eichhornia crassipes present in River Apodi/Mossoró - RN and check some of the possibilities of using the biomass produced, based on the influence of space - temporal and physiological absorption of nutrients by plants. For this, was determined: Leaf area, Leaf wet mass, Leaf dry mass, Real humidity, Apparent humidity, Ash, Total nitrogen, Crude protein, Calcium, Magnesium, Potassium, Total phosphorus, Sodium, Iron, Copper, Manganese, Zinc, Nickel, Cobalt, Aluminum, Cadmium, Lead and Total chromium at different times, 2 sampling points and 2 parts of plants (leaves and roots). The results show that the levels of nutrients, protein and toxic elements present in plant tissue of Eichhornia crassipes are influenced by spatial, temporal and physiological variability. In general, because the maximum values in the dry matter for total nitrogen (4.4088 g/100g), crude protein (27.5549 g/100g), total phosphorus (0.642 g/100 g), calcium (1.444 g/100g), magnesium (0.732 g/100 g), potassium (7.51 g/100 g), copper (4.4279 mg/100g), manganese (322.668 mg/100g), sodium (1.39 g/100g), iron (194.169 mg/100g) and zinc (3.5836 mg/100g), there was the possibility of using biomass of Eichhornia crassipes for various purposes such as in food animal, products production for human consumption, organic fertilizers, fabrication of brick low cost, and crafts. For all these applications requires a control of the levels of substances in plant tissue. Based on the levels of nutrients and crude protein, the younger plants (0 Month) would be best to have their biomass used. Moreover, one factor that contributes to the use of larger plants (6 Months), the levels of toxic elements which have significantly small or below the detection limit. Therefore, further studies quantifying the biomass produced/m2 at 0 and 6 months are needed for a more correct choice for the best time of harvest
Resumo:
Tendo em vista a grande biodiversidade existente no litoral brasileiro, onde muitas espécies ainda são pouco conhecidas, inclusive sob o aspecto nutricional, e considerando que os moluscos bivalves se constituem em um recurso natural de boa aceitação pela população mundial, escolheu-se o molusco bivalve Anadara notabilis, por não ter sido encontrado na literatura nenhuma informação nutricional ou toxicológica sobre ele e devido seu tamanho ser bem maior que outras espécies de moluscos mais popularmente encontrados nessa região. Foram determinados neste trabalho teores de umidade, cinzas, proteínas, macro e microminerais, além de íons metálicos de importância toxicológica. Todas as determinações seguiram as Normas Analíticas do Instituto Adolfo Lutz. A determinação de proteína foi realizada pelo método de Kjeldahl. Todos os íons metálicos foram determinados por espectroscopia de emissão ótica com plasma indutivamente acoplado (ICP-OES) descrito pela metodologia USEPA 6010C. Os resultados mostraram que a Anadara notabilis pode ser introduzida na alimentação dos seres humanos, tendo em vista sua riqueza mineral. Merecem destaque entre os macronutrientes o magnésio e o fósforo que apresentaram os respectivos valores em mg/kg 918,7 e 586,7. Com relação aos micronutrientes destacam-se o ferro presente com 586,7 mg/kg e o Zinco com 12,31 mg/kg. Não foi encontrado índice elevado de metais contaminantes para este molusco, o que impediria seu consumo, apenas o cromo esta 0,7 mg/kg acima do valor estabelecido pela legislação brasileira. Os resultados obtidos certamente serão muito úteis em futuras pesquisas nutricionais e para construção de uma tabela brasileira de composição química de alimentos
Resumo:
Given the large existing biodiversity in the Brazilian coast, where many species are still little known, even under the nutritional aspect, and considering that bivalve molluscs are constituted by a natural resource of well accepted by the population, chose the bivalve Anadara notabilis, it was not found in the literature any nutritional or toxicological information about it and because its size is much larger than other species of mollusks commonly found in this region. Were studied moisture, ash, protein, macro and micro minerals, and metal ions of toxicological significance. All analytical determinations followed the standards of the Institute Adolfo Lutz. The protein determination was performed by the Kjeldahl method. All metal ions were determined by optical emission spectroscopy with inductively coupled plasma (ICP-OES) method described by USEPA 6010C. The results showed that Anadara notabilis can be introduced into food for human beings, in view of its mineral wealth. Noteworthy among the macronutrients phosphorus and magnesium showed that their values in mg / kg 918.7 and 586.7. With regard to micronutrients stand out with this iron 586.7 mg / kg and zinc with 12.31 mg / kg. Was not found high content of metal contaminants to this mollusc, which would prevent their use, only this chromium 0.7 mg / kg above the value established by Brazilian legislation. The results will certainly be very useful in future studies of nutrition and to build a table of chemical composition of Brazilian foods