31 resultados para Chinese construction industry
Resumo:
The mortar is a type of adhesive products used in large scale in construction, it is a function of its variety and ease of application . Although industrialized product and endowed with technology in its production is very frequent occurrence of the same pathology , which causes frequent damage and losses in the construction industry. Faced with this real market situation , the technical and scientific study of the effects of the addition of diatomite on the rheological and mechanical behavior of adhesive mortars are needed. This work back as a suggestion the use of diatomite as a mineral additive in formulations of adhesive mortars for partial replacement of cellulose based additives . The choice of using this mineral occurs through physical, chemical and rheological properties that justify its use in this product line , and is a raw material abundant in our region and can thus contribute positively to the minimization of direct costs cellulose -based additives . Industrial adhesive mortar used for comparison , was type AC1 . Formulations of adhesive mortar with diatomite held constant dosed quantities of sand, cement and the water / cement (w / c ) , or adhesive mortar formulations were developed with levels 10, 20, 30 and 40% of diatomite substituting part of the cellulose -based additives . These mortars were subjected to the following tests that define and evaluate the rheological and mechanical behavior of this type of mortar. The results attest the best performance of the adhesive mortar type AC1 with partial replacement of 30 % of the cellulose-based additive for diatomite
Resumo:
This paper prese nts the validation of the Performance Indicator System for Projects under Construction - SIDECC. The goal was to develop a system of performance indicators from the macroergonômica approach, con sidering criteria of usefulness , practicality and applicabilit y and the concept of continuous improveme nt in the construction industry . The validation process SIDECC consisted of three disti nct models . Modeling I corresponded to the theoretical development and valid ation of a system of indicators . Modeling II concern s the development and valida tion of multi - indicator system . For this modeling, we used the Mother of Use and Importance and Multivariate Analysis . Modeling III correspo nded to the validation situated , which consisted of a case study of a wo rk of construct ion of buildings , which were applied and anal yzed the results of modeling II . This work resulted in the development of an applied and tested for the construction of an integrated system of per formance indicators methodology , involving aspects of production , quality , e nvironmental, health and safety . It is inferred that the SIDECC can be applied, in full or in part , the construction companies as a whole, as we ll as in other economic sectors .
Resumo:
The meaning of work is a construct that has been studied more systematically from the 80s, through various approaches and in different occupational categories. This dissertation aims to describe and discuss the meanings of work for construction workers. This is an empirical study whose research supports herself in the Model Attributes Meaning of Work and its respective instrument for measuring the Meaning of Work Inventory (STI). The research involved 402 workers in the construction industry sector in the two capitals of the Brazilian Northeast, with a mean age of 35.8 years (SD = 11.4). To collect the data, besides the IST, the Working Conditions Questionnaire and sociodemographic data were also used. Data were organized and analyzed using the SPSS program. The study used data analysis techniques to Smallest Space Analisys (SSA), descriptive statistics, correlation and analysis of variance. There was evidence of validity of the STI which was structured into five types of value attributes (what work should be), and seven types of descriptive attributes (what is working). The results showed that the work has high centrality and profiling for participants after the family, the most important aspect in the lives of workers. Aspects of personal and economic growth were more emphasized in definition of what the work should be and responsibility and effort were characteristics that best described the reality of work.
Resumo:
Considered as one of the oldest activities done by men, the civil construction represents one of the most important sectors for the economic growth of a country, in spite of the low results of growth in the past few years and also in the current year. To make this industry grow, even with an unfavourable economic scenario, it is necessary to implement an effective planning in its activities. This is one of the most important concepts brought by the Lean Construction philosophy, which had its origin through the adaptation of the concepts established by the Toyota Production System (TPS) or Lean Production. By having as a scenario the city of Natal\RN, the main goal of this dissertation consists in investigating how the 11 principles of the lean construction influenced the schedule of a construction field that started to implement its lean concepts. As a methodology, it was used the case study of a big enterprise located in Natal (RN). During the execution of the method, documents related to the short-term, midterm and long-term planning were analysed , aiming to describe its planning process; it was also described the factors that caused the delays at the enterprises’ field ;in addition, a comparison was made between the results obtained at the case study and the ones presented at the literature; in the end, the actions were listed by the company, which had the purpose to solve the main causes of delays, verifying if they were linked to the lean construction principles. This research finds its reason of existence in the relevance of its theme at the nowadays reality of the construction industry, since the principles of the lean construction uphold the reduction of processes that are useless, diminishing wastes as well as costs in construction. The relevance is perceived for the academy, in terms of the possibility to discuss if the concepts established by the lean production are being adapted to the civil construction sector and how this adaptation is influencing at the buildings planning project. Economic importance, because with the reduction of the wastes and costs, the companies may reduce the building´s value into a more accessible value, even with the sector´s lower growth. And social significance, because lean construction gives a better participation of the labour at the planning activity. Among the main results, the high frequency of planning errors stands out, mainly the programming deviations and not the task programming, as well as the execution errors, low productivity and activities executed by the workers. Amongst the 11 principles of lean construction, only five were related with the 12 actions analysed by the author. From the 12 actions, four were completely cohesive to one or more from these five principles. Some improvement proposals were also highlighted and established by the research.
Resumo:
The use of composite materials for the construction industry has been the subject of numerous scientific papers in Brazil and in the world. One of the factors that motivate this quest is the housing deficit that countries especially the third world face. In Brazil this deficit reaches more than 6.5 million homes, around 12% of all US households . This paper presents a composite that was obtained from waste generated in processes for the production of granite and marble slabs, cement, gypsum, sand, crushed EPS and water. These wastes cause great damage to the environment and are thrown into landfi lls in bulk. The novelty of the work is in the combined study thermal, mechanical and acoustic composite obtained in real situation of rooms that are part of an experimental housing. Many blocks were made from cement compositions, plaster, foam, sand, marb le and / or granite, preliminary tests of mechanical and thermal resistance were made by choosing the most appropriate proportion. Will be given the manufacturing processes and assembly units 500 units 10 x 80 x 28 cm produced for the construction of an ex perimental home. We studied what kind of block and residue, marble or granite, made it more feasible for the intended purpose. The mechanical strength of the produced blocks were above 3.0 MPa. The thermal resistance of the blocks was confirmed by the maxi mum temperature difference between the inner and outer walls of rooms built around 8.0 ° C. The sound absorption for optimal room was around 31%. Demonstrated the feasibility of using the blocks manufactured with composite material proposed for construction.
Resumo:
The final quality of the works accomplished by the building construction industry depends directly on the quality of the materials supplied and used during all their phases of execution. The federal government participation and several state programs have established conditions to stimulate and require the increment of the quality level in the building construction industry´s product chain. These programs aim at the product conformity to the technical standards. Within this context, the evaluation program of the ceramic product conformity in Rio Grande do Norte state is assessing the conformity degree to Brazilian Technical Standards of ceramic bricks and tiles made in the ceramic production area in the state. In this work, is determine the degree of conformity of the sealing ceramic bricks made by some companies in different areas of the state, such as Assú, São Gonçalo do Amarante, Apodi, Parelhas, São José do Mipibu e Macaíba. Using the technical standards as a point of reference, we attempted to reproduce in the laboratory the experimental procedures to the analysis execution, according to the specifications. It was possible to determine that none of the evaluated samples are in strict conformity with the current technical standards, what reflects the real situation of the products available on the market.
Resumo:
Diseases and disorders related to work sets up an important public health problem in Brazil and worldwide. However, the reality of these diseases still constitutes a gap with regard to its characterization and epidemiological situation, especially in Brazil. In this context, this study aims to analyze the magnitude of morbidity related to work from the injuries and illnesses reported by Health the Diseases Notifiable of Health of the State Public River Health Department worker Reference Center Information System services Grande do Norte from 2007 to 2014. It is ecological study, quantitative cross-sectional study in which the analysis unit of the municipalities of Rio Grande do Norte. Data were collected from the state base of Diseases Notifiable Information System Centre of the Secretariat of State Workers' Health Reference Public Health of Rio Grande do Norte, between March and June 2015, after the approval of the Committee of Ethics in Research of the Federal University of Rio Grande do Norte, Opinion 014/2014. The population was represented by the universe of cases of diseases and disorders related to work that were reported and shut down the system from 2007 to 2014. Data were analyzed using descriptive and inferential statistics, presented in tables, graphs, charts and figures. For this, we used the Microsoft Excel 2007 and SPSS version 20.0. To check the significance level we opted for the application of the chi-square or Fisher tests. We adopted the significance level of p <0.05. Of the 10,161 cases of diseases related to the reported work, the biological work accidents had the highest percentage (52.84%) followed by serious occupational accidents (37.49%). For diseases, the highlights were musculoskeletal (4.82%), mental disorders (2.19%) and exogenous intoxication (1.97%). Among men, there was a predominance of major accidents (91.80%), mental disorders (70.00%) and exogenous poisoning (52.84%). Women were most affected by biological accidents (77.50%) and musculoskeletal diseases (64.10%). Among workers who have suffered injuries predominated mulatto (%), mean age of 35.86 years, low education (%) and workers in the formal sector (%). Among the accidents, biological (n = 5,369) accounted for 52.84% of cases occurred predominantly among nursing professionals (48.31%). The percutaneous exposure was the most frequent (73.05%) and the occurrence of circumstances was improper disposal of sharps (45.28%), the needle the most common agent (66.62%) and the organic material was blood (72.99%). Most injured workers were vaccinated against hepatitis B (68.13%), but no information as to the assessment of the vaccine response. In the course of the disease predominated ignored the situation with loss of monitoring of clinical follow-up (55.62%). There was also an increase in the notification of serious industrial accidents predominantly male (91.80%) workers aged 25-44 years (54.3%) and typical accidents (76.3%). The temporary disability was the most common outcome (55.53%) and hand the most affected part (33.00%); the mining and construction industry had the highest number of cases (25.1%) in registered employee (34.2%). The findings of this study show a positive result in relation to increased mandatory reporting of injuries and illnesses related to work together to health services that meet victimized workers, towards the occurrence of knowledge of these accidents for decision making in public plans and policies of health. However, the information system still needs improvement in both the coverage and the quality of the data to demonstrate with greater reliability the magnitude of events to support the planning of workers' health into shares in the state.
Resumo:
The northeastern region of Brazil has a large number of wells producing oil using a method of secondary recovery steam injection, since the oil produced in this region is essentially viscous. This recovery method puts the cement / coating on thermal cycling, due to the difference in coefficient of thermal expansion between cement and metal coating causes the appearance of cracks at this interface, allowing the passage of the annular fluid, which is associated with serious risk socioeconomic and environmental. In view of these cracks, a correction operation is required, resulting in more costs and temporary halt of production of the well. Alternatively, the oil industry has developed technology for adding new materials in cement pastes, oil well, providing high ductility and low density in order to withstand the thermo-mechanical loads generated by the injection of water vapor. In this context, vermiculite, a clay mineral found in abundance in Brazil has been applied in its expanded form in the construction industry for the manufacture of lightweight concrete with excellent insulation and noise due to its high melting point and the presence of air in their layers lamellar. Therefore, the vermiculite is used for the purpose of providing low-density cement paste and withstand high temperatures caused by steam injection. Thus, the present study compared the default folder containing cement and water with the folders with 6%, 8% and 10% vermiculite micron conducting tests of free water, rheology and compressive strength where it obtained the concentration of 8 % with the best results. Subsequently, the selected concentration, was compared with the results recommended by the API standard tests of filtered and stability. And finally, analyzed the results from tests of specific gravity and time of thickening. Before the study we were able to make a folder with a low density that can be used in cementing oil well in order to withstand the thermo-mechanical loads generated by steam injection
Resumo:
Current environmental concerns include the excessive consumption and inefficient use of non-renewable natural resources. The construction industry is considered one of the largest consumers of natural raw materials, significantly contributing to the environmental degradation of the planet. The use of calcareous quarry (RPPC) and porcelain tile polishing residues (RPP) as partial replacements of the cement in mortars is an interesting alternative to minimize the exploration of considerably large amounts of natural resources. The present study aimed at investigating the properties of fresh and hardened mortars produced using residues to replace cement. The residues used were fully characterized to determine their specific mass, unitary mass, particle size distribution and morphology, and composition. The performance of the mortars was compared to that of reference compositions, prepared without residues. A total of 18 compositions were prepared, 16 using residues and 2 reference ones. The mortars were prepared using Portland CP II F 32 cement, CH I hydrated lime, river sand and tap water. The compositions of the mortars were 1:1:6 and 1:0.5:4.5 (vol%), and water to cement ratios of 1.87 and 1.45 were used, respectively. The mortars in the fresh state were evaluated by consistency index, water retention, density of mass and incorporated air content tests. In their hardened state, the mortars were evaluated by apparent mass density, modulus of elasticity, flexural tensile strength, compressive strength and water absorption by capillarity. The mortars were also analyzed by scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction and fluorescence. Finally, they were classified according to NBR 13281 standards. The mortars prepared using residues partially replacing the cement exhibited lower modulus of elasticity compared to the reference compositions, thus improving the performance in their intended use. On the downside, the water absorption by capillarity was affected by the presence of residues and both the tensile and compressive strength were reduced. However, from the overall standpoint, the replacement of cement by calcareous quarry or porcelain tile polishing residues did not result in significant changes in the properties of the mortars. Therefore, compositions containing these residues can be used in the construction industry
Resumo:
The sharp consumption of natural resources by the construction industry has motivated numerous studies concerning the application of waste to replace partially or fully, some materials, such as aggregates, thereby reducing the environmental impact caused by the extraction of sand and crushing process. The application of stone dust from crushing process arising as an aggregate for the production of Portland cement concrete is a viable alternative in view of the high cost of natural sands, in addition to the environmental damage which causes its operation to the environment. The stone dust has reduced cost compared to natural sand because it is produced in the beds of their own quarries, which are usually located close to major urban centers. This study examined the feasibility of using stone dust from the crushing of rock gneisses in the state of Bahia, replacing natural quartz sand. In the development of scientific study was conducted to characterize physical and chemical raw materials applied and molded cylindrical specimens , using as reference values Fck 20, Fck 25 and Fck 30 MPa ( resistance characteristic of the concrete after 28 days) in following compositions stone powder: 10%, 30%, 50 %, 100% and 100% with additive. The specimens were cured and subjected to the tests of compressive strength and water absorption, then the samples were subjected to the tests of X-ray diffraction and scanning electron microscopy. The results obtained showed that the composition with 10% stone powder showed the best results regarding the physical and mechanical tests performed, confirming the reduction in compressive strength and increased water uptake increased as the content of the powder stone in the concrete composition
Resumo:
The environmental impacts, caused by the solid residues generation, are an often quoted concern nowadays. Some of these residues, which are originated from different human activities, can be fully reused, reducing the effects of the poor waste management on the environment. During the salt production process, the first formed crystals are discarded as industrial waste. This is mainly made of gypsum that is a calcium sulfate dihydrate (CaSO4.2H2O). The gypsum in question may go through a calcination process due to the plaster (CaSO4.0,5H2O) production and then the application on the cement industry. Considering the necessity of development and application for these industrial wastes, this paper aims to analyze the plaster, called Salgesso, from the gypsum that was generated during the salt production, and its use viability on the civil construction industry in order to create environmental and economical benefits. For characterization, the following experiments were performed: X-ray Fluorescence (XRF), X-ray Diffraction (XRD), thermal analysis (TG/DTG) and Scanning Electron Microscopy (SEM) with EDS. The following tests were also performed to obtain the mechanical characteristics: Thinness Modulus, Unit Mass, Setting Time and Compressive Resistance. Three commercial plasters used on civil construction were taken as references. All of these tests were performed according to the current standards. It was noticed that although there were some conflicting findings between the salt and commercial plasters in all of the studied properties, the Salgesso has its values within the standard limits. However, there is the possibility to improve them by doing a more effective calcination process. Three commercial plasters, used in construction, were used as reference material. All tests were performed according to standards in force. It was observed that although some tests present conflicting findings between the salt and gypsum plasters commercial properties in all of the studied Salgesso have values within the limits imposed by the standard, but can be improved simply by calcination process more effective
Resumo:
The use of gypsum, one of the oldest building materials for the construction industry in the country has been experiencing a significant and steady growth, due to its low cost and some of its properties that confer comparative advantage over other binder materials. Its use comprises various applications including the coating of walls and the production of internal seals and linings. Moreover, the fibers are being increasingly incorporated into arrays fragile in an attempt to improve the properties of the composite by reducing the number of cracks, the opening of the same and its propagation velocity. Other properties, depending on the function of the component material or construction, among these thermal and acoustic performances, are of great importance in the context of buildings and could be improved, that is, having better performance with this embodiment. Conduct a comparative study of physico-mechanical, thermal and acoustic composite gypsum incorporating dry coconut fiber, in the form of blanket, constituted the main objective of this work. Improving the thermal and acoustic performances of precast gypsum, used for lining and internal vertical fences of buildings, was the purpose of development of these composites. To evaluate the effect of fiber content on the properties of the composites were used to manufacture the composite layer with different thicknesses. The composites were fabricated in the form of plates with dimensions of 500x500x24mm. To facilitate the comparative study of the properties were also made with material gypsum boards only. We then determined the physico-mechanical, thermal and acoustical plaster and composites. The results indicated that the composites were significant gains in relation to thermal performance and also acoustic, in certain frequency range, increasing the thickness of the blanket. Concerning other physical-mechanical properties, the results showed that although the compressive strength was lower than for the composite did not occur after a fracture catastrophic failure. The same trend was observed with regard to resistance to bending, since the composites have not suffered sudden rupture and still continued after the load supporting point of maximum load
Resumo:
Among the industries, those that produce ceramic porcelain for use in construction industry and oil, during the exploration and production period, play an important role in the production of waste. Much research has been carried out both by academia and the productive sector, sometimes reintroducing them in the same production line that generated them, sometimes in areas unrelated to their generation, as in the production of concrete and mortar for the construction, for example, but each one in an isolated way. In this research, the aim is to study the combined incorporation of the waste drill cuttings of oil well and the residue of the polishing of porcelain, generated in the final stage of finishing of this product in a clay matrix, for the production of red pottery, specifically bricks, ceramic blocks and tiles. The clay comes from the municipality of São Gonçalo, RN, the drilling waste is from the Natal basin, in Rio Grande do Norte, and the residue of the polishing proceeds from a ceramic porcelain of the State of Paraíba. For this purpose, we used a mixture of a plastic clay with a non-plastic, in a ratio of 50% each, settling formulations with the addition of these two residues in this clay matrix. In the formulations, both residues were incorporated with a minimum percentage of 2.5% and maximum of 12.5%, varying from 2.5% each, in each formulation, which the sum of the waste be no more than 15%. It should be noted that the residue of the polishing of ceramic porcelain is a IIa class (not inert). The materials were characterized by XRF, XRD, TG, DTA, laser granulometry and the plasticity index. The technological properties of water absorption, apparent porosity, linear shrinkage of burning, flexural tensile strength and bulk density were evaluated after the sintering of the pieces to 850 °C, 950 °C and 1050 °C, with a burning time of 3 hr, 3 hr and 30 minutes, and 3 hr and 50 minutes, respectively, with a heating rate of 10 °C/minute, for all formulations and landing of 30 minutes. To better understand the influence of each residue and temperature on the evaluated properties, we used the factorial planning and its surfaces of response for the interpretation of the results. It was found that the temperature has no statistical significance at a 95% of reliability level in flexural tensile strength and that it decreases the water absorption and the porosity, but increases the shrinkage and the bulk density. The results showed the feasibility of the desired incorporation, but adjusting the temperature to each product and formulation, and that the temperatures of 850 °C and 950 °C were the one that responded to the largest number of formulations
Resumo:
The construction industry is one of the largest consumers of natural raw materials, and concrete is considered today the most used material wide. This accentuated consumption of natural resources has generated concern with the preservation of the environment, and has motivated various studies related to the use of resid ues, which can partially or entirely substitute, with satisfactory performance, some materials such as the aggregate, and in so doing, decrease the impact on the environment caused by the produced residues. Research has been done to better understand and improve the microstructure of concrete, as well as to understand the mechanism of corrosion in reinforced steel. In this context, this work was developed aiming at discovering the influence of the substitution of natural sand by artificial sand, with rega rd to mechanical resistance, microstructure, and durability. To obtain the electrochemical parameters, an adaptation was made to the galvanostatic electrochemical method to study the corrosion in reinforced steel. Concretes of categories 20 MPa and 40 MPa were produced, containing natural sand, and concretes of the same categories were produced with artificial sand substituting the natural sand, and with the addition of sodium nitrate and sodium chloride. Due to the use of rock dust reject (artificial sand), an evaluation was made of its environmental risk. The results indicate that the concretes of category 20 MPa present a better performance than the concrete made with natural sand, thus making it a viable substitute. For the category 40 MPa, the better performance is from the concrete containing natural sand. The adaptation of the galvanostatic electrochemical technique to the study of the corrosion of reinforced steel within concrete proved to be valid for obtaining electrochemical parameters with a high degree of reliability, considering the number of degrees of freedom
Resumo:
The primary cementing is an important step in the oilwell drilling process, ensuring the mechanical stability of the well and the hydraulic isolation between casing and formation. For slurries to meet the requirements for application in a certain well, some care in the project should be taken into account to obtain a cement paste with the proper composition. In most cases, it is necessary to add chemicals to the cement to modify its properties, according to the operation conditions and thus obtain slurries that can move inside the jacket providing a good displacement to the interest area. New technologies of preparation and use of chemicals and modernization of technological standards in the construction industry have resulted in the development of new chemical additives for optimizing the properties of building materials. Products such as polycarboxylate superplasticizers provide improved fluidity and cohesion of the cement grains, in addition to improving the dispersion with respect to slurries without additives. This study aimed at adapting chemical additives used in civil construction to be used use in oilwell cement slurries systems, using Portland cement CPP-Special Class as the hydraulic binder. The chemical additives classified as defoamer, dispersant, fluid loss controller and retarder were characterized by infrared absorption spectroscopy, thermogravimetric analyses and technological tests set by the API (American Petroleum Institute). These additives showed satisfactory results for its application in cement slurries systems for oil wells. The silicone-based defoamer promoted the reduction of air bubbles incorporated during the stirring of the slurries. The dispersant significantly reduced the rheological parameters of the systems studied. The tests performed with the fluid loss controller and the retarder also resulted in suitable properties for application as chemical additives in cement slurries