85 resultados para Captura gravitacional
Resumo:
Several materials are currently under study for the CO2 capture process, like the metal oxides and mixed metal oxides, zeolites, carbonaceous materials, metal-organic frameworks (MOF's) organosilica and modified silica surfaces. In this work, evaluated the adsorption capacity of CO2 in mesoporous materials of different structures, such as MCM-48 and SBA- 15 without impregnating and impregnated with nickel in the proportions 5 %, 10 % and 20 % (m/m), known as 5Ni-MCM-48, 10Ni-MCM-48, 20Ni-MCM-48 and 5Ni-SBA-15, 10NiSBA-15, 20Ni-SBA-15. The materials were characterized by means of X-ray diffraction (XRD), thermal analysis (TG and DTG), Fourier transform infrared spectroscopy (FT-IR), N2 adsorption and desorption (BET) and scanning electron microscopy (SEM) with EDS. The adsorption process was performed varying the pressure of 100 - 4000 kPa and keeping the temperature constant and equal to 298 K. At a pressure of 100 kPa, higher concentrations of adsorption occurred for the materials 5Ni-MCM-48 (0.795 mmol g-1 ) and SBA-15 (0.914 mmol g-1 ) is not impregnated, and at a pressure of 4000 kPa for MCM-48 materials (14.89 mmol g-1) and SBA-15 (9.97 mmol g-1) not impregnated. The results showed that the adsorption capacity varies positively with the specific area, however, has a direct dependency on the type and geometry of the porous structure of channels. The data were fitted using the Langmuir and Freundlich models and were evaluated thermodynamic parameters Gibbs free energy and entropy of the adsorption system
Resumo:
The motion capture is a main tool for quantitative motion analyses. Since the XIX century, several motion caption systems have been developed for biomechanics study, animations, games and movies. The biomechanics and kinesiology involves and depends on knowledge from distinct fields, the engineering and health sciences. A precise human motion analysis requires knowledge from both fields. It is necessary then the use of didactics tools and methods for research and teaching for learning aid. The devices for analysis and motion capture currently that are found on the market and on educational institutes presents difficulties for didactical practice, which are the difficulty of transportation, high cost and limited freedom for the user towards the data acquisition. Therefore, the motion analysis is qualitatively performed or is quantitatively performed in highly complex laboratories. Based is these problems, this work presents the development of a motion capture system for didactic use hence a cheap, light, portable and easily used device with a free software. This design includes the selection of the device, the software development for that and tests. The developed system uses the device Kinect, from Microsoft, for its low cost, low weight, portability and easy use, and delivery tree-dimensional data with only one peripheral device. The proposed programs use the hardware to make motion captures, store them, reproduce them, process the motion data and graphically presents the data.
Resumo:
The marine turtles biological characteristics and the impact they have been suffering in consequence of human activities have caused in the last decades the decrease of populations to unsustainable levels. All four of the species described in this paper are registered as endangered in a list by IUCN: Caretta caretta, Lepidochelys olivacea, Chelonia mydas, Dermochelys coriacea. The main causes of such impact include several fishing activities, mostly the surface longline. This paper discusses the monitoring of two foreigner longline fleet along the North East Brazilian coast between October of 2004 and September of 2005. Both operated in the West South Atlantic, one using the Chinese technique and the other the American. The American method s target species is the swordfish (Xiphias gladius), and it is characterized by using squid as bait, J 9/0 offset 5º hook, light sticks and night soaking. It also operates in shallower waters than the Chinese method. The source of information about the efforts and the catches came from onboard observers and were used to calculate the catching rate of turtles over 1000 hooks (CPUE). The American equipment caught more turtles (CPUE = 0,059; N= 103), mainly D. coriacea, while the Chinese longline caught mainly the L. olivacea and presented a CPUE= 0,018 (N= 89). The hooks were most frequently found attached to the mouth of C. caretta, C. mydas, and L. olivacea. The D. coriacea were most frequently caught by hooks externally attached to different parts of their body. There was no significant difference between the hook type catching and most turtles were still alive when released. The results suggest a greater potential of turtle catching by the American method. Besides the statistic tests have showed less interaction between the Chinese equipment and marine turtles, the catches of this fishing technique could have been underestimated due to miscommunication between the onboard observer and the vessel s crew plus the retrieve of the longline during night time
Resumo:
Steam injection is the most used method of additional recovery for the extraction of heavy oil. In this type procedure is common to happen gravitational segregation and this phenomenon can affect the production of oil and therefore, it shoulds be considered in the projects of continuous steam injection. For many years, the gravitational segregation was not adequately considered in the calculation procedures in Reservoir Engineering. The effect of the gravity causes the segregation of fluids inside the porous media according to their densities. The results of simulation arising from reservoirs could provide the ability to deal with the gravity, and it became apparent that the effects of the gravity could significantly affect the performance of the reservoir. It know that the gravitational segregation can happen in almost every case where there is injection of light fluid, specially the steam, and occurs with greater intensity for viscous oil reservoirs. This work discusses the influence of some parameters of the rock-reservoir in segregation as viscosity, permeability, thickness, cover gas, porosity. From a model that shows the phenomenon with greater intensity, optimized some operational parameters as the rate flow rate steam, distance between the wells injector-producer, and interval of completion which contributed to the reduction in gravity override, thus increasing the oil recovery. It was shown a greater technical-economic viability for the model of distance between the wells 100 m. The analysis was performed using the simulator of CMG (Computer Modeling Group-Stars 2007.11, in which was observed by iterating between studied variables in heavy oil reservoirs with similar characteristics to Brazilian Northeast
Resumo:
The gas injection has become the most important IOR process in the United States. Furthermore, the year 2006 marks the first time the gas injection IOR production has surpassed that of steam injection. In Brazil, the installation of a petrochemical complex in the Northeast of Brazil (Bahia State) offers opportunities for the injection of gases in the fields located in the Recôncavo Basin. Field-scale gas injection applications have almost always been associated with design and operational difficulties. The mobility ratio, which controls the volumetric sweep, between the injected gas and displaced oil bank in gas processes, is typically unfavorable due to the relatively low viscosity of the injected gas. Furthermore, the difference between their densities results in severe gravity segregation of fluids in the reservoirs, consequently leading to poor control in the volumetric sweep. Nowadays, from the above applications of gas injection, the WAG process is most popular. However, in attempting to solve the mobility problems, the WAG process gives rise to other problems associated with increased water saturation in the reservoir including diminished gas injectivity and increased competition to the flow of oil. The low field performance of WAG floods with oil recoveries in the range of 5-10% is a clear indication of these problems. In order to find na effective alternative to WAG, the Gas Assisted Gravity Drainage (GAGD) was developed. This process is designed to take advantage of gravity force to allow vertical segregation between the injected CO2 and reservoir crude oil due to their density difference. This process consists of placing horizontal producers near the bottom of the pay zone and injecting gás through existing vertical wells in field. Homogeneous models were used in this work which can be extrapolated to commercial application for fields located in the Northeast of Brazil. The simulations were performed in a CMG simulator, the STARS 2007.11, where some parameters and their interactions were analyzed. The results have shown that the CO2 injection in GAGD process increased significantly the rate and the final recovery of oil
Resumo:
Due to reservoirs complexity and significantly large reserves, heavy oil recovery has become one of the major oil industry challenges. Thus, thermal methods have been widely used as a strategic method to improve heavy oil recovery. These methods improve oil displacement through viscosity reduction, enabling oil production in fields which are not considered commercial by conventional recovery methods. Among the thermal processes, steam flooding is the most used today. One consequence in this process is gravity segregation, given by difference between reservoir and injected fluids density. This phenomenon may be influenced by the presence of reservoir heterogeneities. Since most of the studies are carried out in homogeneous reservoirs, more detailed studies of heterogeneities effects in the reservoirs during steam flooding are necessary, since most oil reservoirs are heterogeneous. This paper presents a study of reservoir heterogeneities and their influence in gravity segregation during steam flooding process. In this study some heterogeneous reservoirs with physical characteristics similar those found in the Brazilian Northeast Basin were analyzed. To carry out the simulations, it was used the commercial simulator STARS by CMG (Computer Modeling Group) - version 2007.11. Heterogeneities were modeled with lower permeability layers. Results showed that the presence of low permeability barriers can improve the oil recovery, and reduce the effects of gravity segregation, depending on the location of heterogeneities. The presence of these barriers have also increased the recovered fraction even with the reduction of injected steam rate
Resumo:
In Brazil and around the world, oil companies are looking for, and expected development of new technologies and processes that can increase the oil recovery factor in mature reservoirs, in a simple and inexpensive way. So, the latest research has developed a new process called Gas Assisted Gravity Drainage (GAGD) which was classified as a gas injection IOR. The process, which is undergoing pilot testing in the field, is being extensively studied through physical scale models and core-floods laboratory, due to high oil recoveries in relation to other gas injection IOR. This process consists of injecting gas at the top of a reservoir through horizontal or vertical injector wells and displacing the oil, taking advantage of natural gravity segregation of fluids, to a horizontal producer well placed at the bottom of the reservoir. To study this process it was modeled a homogeneous reservoir and a model of multi-component fluid with characteristics similar to light oil Brazilian fields through a compositional simulator, to optimize the operational parameters. The model of the process was simulated in GEM (CMG, 2009.10). The operational parameters studied were the gas injection rate, the type of gas injection, the location of the injector and production well. We also studied the presence of water drive in the process. The results showed that the maximum vertical spacing between the two wells, caused the maximum recovery of oil in GAGD. Also, it was found that the largest flow injection, it obtained the largest recovery factors. This parameter controls the speed of the front of the gas injected and determined if the gravitational force dominates or not the process in the recovery of oil. Natural gas had better performance than CO2 and that the presence of aquifer in the reservoir was less influential in the process. In economic analysis found that by injecting natural gas is obtained more economically beneficial than CO2
Resumo:
The oil companies in the area in general are looking for new technologies that can increase the recovery factor of oil contained in reservoirs. These investments are mainly aimed at reducing the costs of projects which are high. Steam injection is one of these special methods of recovery in which steam is injected into the reservoir in order to reduce the viscosity of the oil and make it more mobile. The process assisted gravity drainage steam (SAGD) using steam injection in its mechanism, as well as two parallel horizontal wells. In this process steam is injected through the horizontal injection well, then a vapor chamber is formed by heating the oil in the reservoir and, by the action of gravitational forces, this oil is drained down to where the production well. This study aims to analyze the influence of pressure drop and heat along the injection well in the SAGD process. Numerical simulations were performed using the thermal simulator STARS of CMG (Computer Modeling Group). The parameters studied were the thermal conductivity of the formation, the flow of steam injection, the inner diameter of the column, the steam quality and temperature. A factorial design was used to verify the influence of the parameters studied in the recovery factor. We also analyzed different injection flow rates for the model with pressure drop and no pressure drop, as well as different maximum flow rates of oil production. Finally, we performed an economic analysis of the two models in order to check the profitability of the projects studied. The results showed that the pressure drop in injection well have a significant influence on the SAGD process.
Resumo:
Como os recursos de hidrocarbonetos convencionais estão se esgotando, a crescente demanda mundial por energia impulsiona a indústria do petróleo para desenvolver mais reservatórios não convencionais. Os recursos mundiais de betume e óleo pesado são estimados em 5,6 trilhões de barris, dos quais 80% estão localizados na Venezuela, Canadá e EUA. Um dos métodos para explorar estes hidrocarbonetos é o processo de drenagem gravitacional assistido com injeção de vapor e solvente (ES-SAGD Expanding Solvent Steam Assisted Gravity Drainage). Neste processo são utilizados dois poços horizontais paralelos e situados verticalmente um acima do outro, um produtor na base do reservatório e um injetor de vapor e solvente no topo do reservatório. Este processo é composto por um método térmico (injeção de vapor) e um método miscível (injeção de solvente) com a finalidade de causar a redução das tensões interfaciais e da viscosidade do óleo ou betume. O objetivo deste estudo é analisar a sensibilidade de alguns parâmetros operacionais, tais como: tipo de solvente injetado, qualidade do vapor, distância vertical entre os poços, porcentagem de solvente injetado e vazão de injeção de vapor sobre o fator de recuperação para 5, 10 e 15 anos. Os estudos foram realizados através de simulações concretizadas no módulo STARS (Steam Thermal, and Advanced Processes Reservoir Simulator) do programa da CMG (Computer Modelling Group), versão 2010.10, onde as interações entre os parâmetros operacionais, estudados em um modelo homogêneo com características de reservatórios semelhantes aos encontrados no Nordeste Brasileiro, foram observadas. Os resultados obtidos neste estudo mostraram que os melhores fatores de recuperação ocorreram para níveis máximos do percentual de solvente injetado e da distância vertical entre os poços. Observou-se também que o processo será rentável dependendo do tipo e do valor do solvente injetado
Resumo:
Nowadays, most of the hydrocarbon reserves in the world are in the form of heavy oil, ultra - heavy or bitumen. For the extraction and production of this resource is required to implement new technologies. One of the promising processes for the recovery of this oil is the Expanding Solvent Steam Assisted Gravity Drainage (ES-SAGD) which uses two parallel horizontal wells, where the injection well is situated vertically above the production well. The completion of the process occurs upon injection of a hydrocarbon additive at low concentration in conjunction with steam. The steam adds heat to reduce the viscosity of the oil and solvent aids in reducing the interfacial tension between oil/ solvent. The main force acting in this process is the gravitational and the heat transfer takes place by conduction, convection and latent heat of steam. In this study was used the discretized wellbore model, where the well is discretized in the same way that the reservoir and each section of the well treated as a block of grid, with interblock connection with the reservoir. This study aims to analyze the influence of the pressure drop and heat along the injection well in the ES-SAGD process. The model used for the study is a homogeneous reservoir, semi synthetic with characteristics of the Brazilian Northeast and numerical simulations were performed using the STARS thermal simulator from CMG (Computer Modelling Group). The operational parameters analyzed were: percentage of solvent injected, the flow of steam injection, vertical distance between the wells and steam quality. All of them were significant in oil recovery factor positively influencing this. The results showed that, for all cases analyzed, the model considers the pressure drop has cumulative production of oil below its respective model that disregards such loss. This difference is more pronounced the lower the value of the flow of steam injection
Resumo:
Objetivo: Trabalho realizado em ratos com o objetivo de estudar o efeito do Fator de Crescimento de Fibroblastos básico (FCFb) na cicatrização da aponeurose abdominal. Métodos: Foram usados 20 ratos Wistar separados aleatoriamente em 2 grupos iguais. Os animais foram anestesiados com pentobarbital sódico na dose de 20 mg/Kg por via intraperitoneal e submetidos a laparotomia mediana de 4 cm, cuja camada aponeurótica foi suturada com mononylon 5-0. No grupo I foi aplicada a dose de 5mg de FCFb sobre a sutura da aponeurose. No grupo II (controle) foi aplicada solução salina 0,9% sobre a linha se sutura. Após observação por 7 dias os animais foram mortos com superdose de anestésico. A camada aponeurótica com 1,5 cm de largura foi submetida a teste de resistência à tensão empregando a Máquina de Ensaios EMIC MF500. Biópsias das zonas de sutura foram processadas e coradas com HE e o tricômico de Masson. Os achados histopatológicos foram quantificados através de sistema digital (Image pro-plus) de captura e processamento de imagens. Os dados obtidos foram analisados pelo teste T com significância 0,05. Resultados: Nos animais do grupo I (experimental) a zona de sutura da camada aponeurótica suportou a carga de 1.103±103,39gf. A quantificação dos dados histopatológicos desse grupo atingiu a densidade média 226±29,32. No grupo II (controle) a carga suportada pela zona de sutura foi de 791,1±92,77 gf. Quando foram comparadas as médias das resistências à tensão dos dois grupos, observou-se uma diferença significante (p<0,01). O exame histopatológico das lâminas desse grupo relevou densidade média 114,1±17,01, correspondendo a uma diferença significante quando comparadas as médias dos dois grupos (p<0,01). Conclusão: Os dados permitem concluir que o FCFb contribuiu para aumentar a resistência da aponeurose suturada e para melhorar os parâmetros histopatológicos da cicatrização.
Resumo:
The IT capability is a organizational ability to perform activities of this role more effectively and an important mechanism in creating value. Its building process (stages of creation and development) occurs through management initiatives for improvement in the performance of their activities, using human resources and IT assets complementary responsible for the evolution of their organizational routines. This research deals with the IT capabilities related to SIG (integrated institutional management systems), built and deployed in UFRN (Universidade Federal do Rio Grande do Norte) to realization and control of administrative, academic and human resources activities. Since 2009, through cooperative agreements with federal and educational institutions of direct administration, UFRN has supported the implementation of these systems, currently involving more than 30 institutions. The present study aims to understand how IT capabilities, relevant in the design, implementation and dissemination of SIG, were built over time. This is a single case study of qualitative and longitudinal nature, performed by capturing, coding and analysis from secondary data and from semi-structured interviews conducted primarily with members of Superintenência de Informática, organizational unit responsible for SIG systems in UFRN. As a result, the technical, of internal relationship and external cooperation capabilities were identified as relevant in the successful trajectory of SIG systems, which have evolved in different ways. The technical capacity, initiated in 2004, toured the stages of creation and development until it reached the stage of stability in 2013, due to technological limits. Regarding the internal relationship capability, begun in 2006, it toured the stages of creation and development, having extended its scope of activities in 2009, being in development since then. Unlike the standard life cycle observed in the literature, the external cooperation capability was initiated by an intensity of initiatives and developments in the routines in 2009, which were decreasing to cease in 2013 in order to stabilize the technological infrastructure already created for cooperative institutions. It was still identified the start of cooperation in 2009 as an important event selection, responsible for changing or creating trajectories of evolution in all three capacities. The most frequent improvements initiatives were of organizational nature and the internal planning activity has been transformed over the routines of the three capabilities. Important resources and complementary assets have been identified as important for the realization of initiatives, such as human resources technical knowledge to the technical capabilities and external cooperation, and business knowledge, for all of them, as well as IT assets: the iproject application for control of development processes, and the document repository wiki. All these resources and complementary assets grew along the capacities, demonstrating its strategic value to SINFO/UFRN
Resumo:
Sugarcane (Saccharum spp.) is a plant from Poaceae family that has an impressive ability to accumulate sucrose in the stalk, making it a significant component of the economy of many countries. About 100 countries produce sugarcane in an area of 22 million hectares worldwide. For this reason, many studies have been done using sugarcane as a plant model in order to improve production. A change in gravity may be one kind of abiotic stress, since it generates rapid responses after stimulation. In this work we decided to investigate the possible morphophysiological, biochemical and molecular changes resulting from microgravity. Here, we present the contributions of an experiment where sugarcane plants were submitted to microgravity flight using a vehicle VSB-30, a sounding rocket developed by Aeronautics and Space Institute teams, in cooperation with the German Space Agency. Sugarcane plants with 10 days older were submitted to a period of six minutes of microgravity using the VSB-30 rocket. The morphophysiological analyses of roots and leaves showed that plants submitted to the flight showed changes in the conduction tissues, irregular pattern of arrangement of vascular bundles and thickening of the cell walls, among other anatomical changes that indicate that the morphology of the plants was substantially influenced by gravitational stimulation, besides the accumulation of hydrogen peroxide, an important signaling molecule in stress conditions. We carried out RNA extraction and sequencing using Illumina platform. Plants subjected to microgravity also showed changes in enzyme activity. It was observed an increased in superoxide dismutase activity in leaves and a decreased in its activity in roots as well as for ascorbate peroxidase activity. Thus, it was concluded that the changes in gravity were perceived by plants, and that microgravity environment triggered changes associated with a reactive oxygen specie signaling process. This work has helped the understanding of how the gravity affects the structural organization of the plants, by comparing the anatomy of plants subjected to microgravity and plants grown in 1g gravity
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
Deep bed filtration occurs in several industrial and environmental processes like water filtration and soil contamination. In petroleum industry, deep bed filtration occurs near to injection wells during water injection, causing injectivity reduction. It also takes place during well drilling, sand production control, produced water disposal in aquifers, etc. The particle capture in porous media can be caused by different physical mechanisms (size exclusion, electrical forces, bridging, gravity, etc). A statistical model for filtration in porous media is proposed and analytical solutions for suspended and retained particles are derived. The model, which incorporates particle retention probability, is compared with the classical deep bed filtration model allowing a physical interpretation of the filtration coefficients. Comparison of the obtained analytical solutions for the proposed model with the classical model solutions allows concluding that the larger the particle capture probability, the larger the discrepancy between the proposed and the classical models