19 resultados para Camada limite planetária
Resumo:
Bi-magnetic core@shell nanoparticle has attracted attention several researchers because great applicability that they offer. The possibility of combining different functionalities of magnetic materials make them a key piece in many areas as in data processing permanent magnets and biomagnetics sistems. These nanoparticles are controlled by intrinsic properties of the core and shell materials as well as the interactions between them, besides size and geometry effects. Thus, it was developed in this thesis a theoretical study about dipolar interaction contribution between materials different magnetic properties in bi-magnetic core@shell nanoparticles conventional spherical geometry. The materials were analyzed CoFe2O4, MnFe2O4 e CoFe2 in various combinations and sizes. The results show that the impact of the core dipole field in the shell cause reverse magnetization early its, before of the core, in nanoparticle of CoFe2O4(22nm)@CoFe2(2nm), thereby causing a decrease coercivity field of 65% in comparection with simple nanoparticle of CoFe2O4 (HC=13.6 KOe) of same diameter. The large core anisotropy in conventional nanoparticle makes it the a stable dipolar field source in the shell, that varies length scale of the order of the core radius. Furthermore, the impact of dipolar field is greatly enhanced by the geometrical constraints and by magnetics properties of both core@shell materials. In systems with core coated with a thin shell of thickness less than the exchange length, the interaction interface can hold reversal the shell occurring an uniform magnetization reversal, however this effect only is relevant on systems where the dipole field effects is weak compared with the exchange interaction.
Resumo:
Bi-magnetic core@shell nanoparticle has attracted attention several researchers because great applicability that they offer. The possibility of combining different functionalities of magnetic materials make them a key piece in many areas as in data processing permanent magnets and biomagnetics sistems. These nanoparticles are controlled by intrinsic properties of the core and shell materials as well as the interactions between them, besides size and geometry effects. Thus, it was developed in this thesis a theoretical study about dipolar interaction contribution between materials different magnetic properties in bi-magnetic core@shell nanoparticles conventional spherical geometry. The materials were analyzed CoFe2O4, MnFe2O4 e CoFe2 in various combinations and sizes. The results show that the impact of the core dipole field in the shell cause reverse magnetization early its, before of the core, in nanoparticle of CoFe2O4(22nm)@CoFe2(2nm), thereby causing a decrease coercivity field of 65% in comparection with simple nanoparticle of CoFe2O4 (HC=13.6 KOe) of same diameter. The large core anisotropy in conventional nanoparticle makes it the a stable dipolar field source in the shell, that varies length scale of the order of the core radius. Furthermore, the impact of dipolar field is greatly enhanced by the geometrical constraints and by magnetics properties of both core@shell materials. In systems with core coated with a thin shell of thickness less than the exchange length, the interaction interface can hold reversal the shell occurring an uniform magnetization reversal, however this effect only is relevant on systems where the dipole field effects is weak compared with the exchange interaction.
Resumo:
Nowadays, in the plastic industry are used mills that accomplish the recycling of residues generated in the production of its components. These mills contain cut sheets that suffer accelerated wear, once they are submitted constantly to the tribologic efforts, decreasing its useful life. To reduce this problem, it s used noble steels or takes place superficial treatments. The ionic nitriding process presents some limitations related to the uniformity of the layer in pieces with complex geometry, committing its application in pieces as knives, head offices, engagements, etc. However, the new technique of nitriding in cathodic cage eliminates some problems, as the restrictions rings, inherent to the conventional ionic nitriding. In present work, was studied the use viabilization of steels less noble, as SAE 1020, SAE 4320 and SAE 4340, nitreded by two different techniques, to substitute the AISI 01 steels, usually used in the cut knifes fabrication, seeking to reduce the costs and at the sane time to increase the useful life of these knifes. The steel most viable was the SAE 4340, nitrided in cathodic cage, because it presented uniformity in thickness and in the hardness of the layer, besides of increased 58% in the average its useful life
Resumo:
The extent of the Brazilian Atlantic rainforest, a global biodiversity hotspot, has been reduced to less than 7% of its original range. Yet, it contains one of the richest butterfly fauna in the world. Butterflies are commonly used as environmental indicators, mostly because of their strict association with host plants, microclimate and resource availability. This research describes diversity, composition and species richness of frugivorous butterflies in a forest fragment in the Brazilian Northeast. It compares communities in different physiognomies and seasons. The climate in the study area is classified as tropical rainy, with two well defined seasons. Butterfly captures were made with 60 Van Someren-Rydon traps, randomly located within six different habitat units (10 traps per unit) that varied from very open (e.g. coconut plantation) to forest interior. Sampling was made between January and December 2008, for five days each month. I captured 12090 individuals from 32 species. The most abundant species were Taygetis laches, Opsiphanes invirae and Hamadryas februa, which accounted for 70% of all captures. Similarity analysis identified two main groups, one of species associated with open or disturbed areas and a second by species associated with shaded areas. There was a strong seasonal component in species composition, with less species and lower abundance in the dry season and more species and higher abundance in the rainy season. K-means analysis indicates that choice of habitat units overestimated faunal perceptions, suggesting less distinct units. The species Taygetis virgilia, Hamadryas chloe, Callicore pygas e Morpho achilles were associated with less disturbed habitats, while Yphthimoides sp, Historis odius, H. acheronta, Hamadryas feronia e Siderone marthesia likey indicate open or disturbed habitats. This research brings important information for conservation of frugivorous butterflies, and will serve as baseline for future projects in environmental monitoring