29 resultados para CULTIVATED TOMATOES
Resumo:
Nowadays, the growing environmental worry leads research the focus the application of alternative materials from renewable resources on the industrial process. The most common vegetable oil extractant using around the world is the hexane, a petroleum derived, toxic and flammable. Based on this fact, the goal of this work was to test vegetable oil extractions from sunflower seeds cultivated on the Rio Grande do Norte State using two extraction process, the mechanical expelling and solvent extraction, this one using hexane and ethanol as a alternative solvent. The solvent extractions were carried out in the Soxhlet extractor in three different extraction times (4, 6, and 8 hours). The effect of solvent and extraction time was evaluated. The mechanical extraction was carried out in a expeller and the sunflower oil obtained was characterized by its physical-chemical properties and compared with sunflower refinery oil. Furthermore this work also explored the pyrolysis reaction carried out by thermogravimetry measurement as alternative route to obtain biofuel. For this purpose the oil samples were heated to ambient temperature until 900°C in heating rate of 5, 10, 20ºC min-1 with the objective evaluated the kinetics parameters such activation energy and isoconversion. The TG/DTG curves show the thermal profile decomposition of triglycerides. The curves also showed that antioxidant presents on the refinery oil not influence on the thermal stability of sunflower oil. The total yield of the extraction s process with hexane and ethanol solvent were compared, and the results indicated that the extraction with ethanol were more efficient. The pyrolysis reaction results indicated that the use of unpurified oil required less energy to obtain the bio-oil
Resumo:
Nowadays generation ethanol second, that t is obtained from fermentation of sugars of hydrolyses of cellulose, is gaining attention worldwide as a viable alternative to petroleum mainly for being a renewable resource. The increase of first generation ethanol production i.e. that obtained from sugar-cane molasses could lead to a reduction of lands sustainable for crops and food production. However, second generation ethanol needs technologic pathway for reduce the bottlenecks as production of enzymes to hydrolysis the cellulose to glucose i.e. the cellulases as well as the development of efficient biomass pretreatment and of low-cost. In this work Trichoderma reesei ATCC 2768 was cultivated under submerged fermentation to produce cellulases using as substrates waste of lignocellulosic material such as cashew apple bagasse as well as coconut bagasse with and without pretreatment. For pretreatment the bagasses were treated with 1 M NaOH and by explosion at high pressure. Enzyme production was carried out in shaker (temperature of 27ºC, 150 rpm and initial medium pH of 4.8). Results showed that T.reesei ATCC 2768 showed the higher cellulase production when the cashew apple bagasse was treated with 1M NaOH (2.160 UI/mL of CMCase and 0.215 UI/mL of FPase), in which the conversion of cellulose, in terms of total reducing sugars, was of 98.38%, when compared to pretreatment by explosion at high pressure (0.853 UI/mL of CMCase and 0.172 UI/mL of Fpase) showing a conversion of 47.39% of total reducing sugars. Cellulase production is lower for the medium containing coconut bagasse treated with 1M NaOH (0.480 UI/mL of CMcase and 0.073 UI/mL of FPase), giving a conversion of 49.5% in terms of total reducing sugars. Cashew apple bagasse without pretreatment showed cellulase activities lower (0.535 UI/mL of CMCase and 0,152 UI/mL of FPase) then pretreated bagasse while the coconut bagasse without pretreatment did not show any enzymatic activity. Maximum cell concentration was obtained using cashew nut bagasse as well as coconut shell bagasse treated with 1M NaOH, with 2.92 g/L and 1.97 g/L, respectively. These were higher than for the experiments in which the substrates were treated by explosion at high pressure, 1.93 g/L and 1.17 g/L. Cashew apple is a potential inducer for cellulolytic enzymes synthysis showing better results than coconut bagasse. Pretreatment improves the process for the cellulolytic enzyme production
Resumo:
In the area of food dehydration, drying of vegetables has a very representative position, it has the objective to preserve the surplus of crops and began with sun drying. Among the vegetable is the carrot, which had its origin in Southeast Asia and in Brazil is a vegetable cultivated enough. The principal objective of this works is to find alternative ways for the conservation of carrot slices by osmotic dehydration with additional drying in heart. Were initially defined the best conditions of pre-osmotic dehydration (temperature, immersion time, type of osmotic solution) based on the results of humidity loss, solid gain, weight reduction and efficiency ratio of predehydrated carrots slices. The osmotic solutions used were composed by NaCl (10%) and sucrose (50 ° Brix) named DO1 and sucrose (50 ° Brix) called DO2. Was made experiment of pre-osmotic dehydration of carrot slices in two temperature levels, with complementary drying in heart with air circulation at 70 º C. Sensory analysis was performed and the study of slices dehydration osmotically and the slices without osmotic treatment. The best results were obtained with the solution DO1 60°C with immersion time of 60 min. The drying of carrot slices presented period of constant rate and decreasing rate. The osmotic pre-treatment reduced the initial humidity of carrot slices, reducing the time to the product to reach the same humidity content. Fick's model, considering the shrinkage, and the Page s model, adapt satisfactorily to experimental datas, allowing the determination of effective diffusion coefficients, consistent with the references. The results of sensory analysis of dry product, showed greater acceptance of sliced carrots with osmotic treatment
Resumo:
Biosurfactants are amphiphilic molecules synthesized by microorganisms such as bacteria, yeast or filamented fungi cultivated in various carbon sources among sucrose and hydrocarbons. These molecules are composed by a hydrophilic and hydrophobic part. They operate mostly at interfaces of fluids of different polarities. Because of this characteristic, they are potentially employed in numerous industries, such as the textile, medical, cosmetics, food and mainly in the petrochemical ones. Therefore industry has interest in developing new biosurfactant production processes in high scale, in order to become them economically competitive when compared to synthetic biosurfactants. This work aims to evaluate the biosurfactant production applying a non-conventional substrate sugar cane molasses proceeding from the sugar industry thus reducing the production costs. The strain identified as AP029/GLIIA, isolated from oil wells in Rio Grande do Norte state and used in these experiments belongs to the culture collection of Antibiotics Department of UFPE. The fermentation were carried out using different conditions according to a factorial planning 24 with duplicate at center point, in which the studied factors were molasse concentration, nitrate concentration, agitation and aeration ratio. The experiments were performed in a shaker at 38ºC of temperature. Samples were withdrawn in regular periods of time of up to 72 hours of fermentation in order to analyze substrate consumption, cellular concentration, superficial tension, critical micelle dilution (CMD-1 e CMD-2) as well as extracelullar protein production. The results showed a production of 3,480 g/L of biomass, a reduction of 41% on superficial tension, 67% of substrate consumption and 0,2805 g/L of extracellular protein
Resumo:
Availability of good quality water has been reduced vertiginously, over the last decade, in the world. In some regions, the water resources have high concentration of the dissolved salts, these characteristics of the water make it s use impossible. Water quality can be a limitation for irrigated agriculture, principally in regions of arid or semiarid climate where the water resources are generally saline and are exposed at high evaporation ratio. For that reason, precipitation of the salts occurs near the soil surface and those salts themselves cumulate in the vegetal tissue, reducing the soil fertility and crop production. The adoption of tolerant crop to the water salinity and soil salinity, adaptable to the climatic conditions is other emergent necessity. This work had the goal of studying the effects of four salinity levels of the irrigation water salinity and use of mulch, dried leaves of Forest mangrove (Acacia mangiumWilld), in cultivated soil with amaranth (Amaranthus cruentus, BRS Alegria variety), in greenhouse. It was utilized the transplant of plants to PVC columns, containing 30 kg of silty loam soil, 10 days after emerging, with space of 50 x 50 cm between lines. Treatments were composed by combination of four levels of salinity (0.147; 1.500; 3.000 e 4.500 dS m-1), obtained by addition NaCl (commercial) to irrigation water and soil with and without protection, by mulch. A factorial system 4 x 2 was used with four repetitions, totalizing 32 parcels. The concentrations of nutrients in soil solution have been evaluated, in the dry matter of the vegetal tissue (roots, stem, leaves and raceme residue), at the end of the vegetative cycle. The use of soil protection reduced time for the beginning inflorescence of plants, at the same time, the increase of the salinity delayed this phase of amaranth development. The use of the mulch effectively increased the height, stem diameter, area of the larger leaf, humidity and dry matter content and amaranth grain production. The vegetal species showed salinity tolerance to experimented levels. The adopted treatments did not affect the pH values, exchangeable cation contents, electrical conductivity of soil solution (EC1:5) and saturated extract (ECSE), and Ca+2, Mg+, Fe+2 and Mn+2 contents, in the soil solution. The increase of the salinity concentration in the irrigation water inhibited the mineralization process of the organic matter (OM) and, consequently, the efficiency in the it´s utilization by plants, at the same time, produced increase in the values of the exchangeable sodium percentage (ESP), sodium adsorption ratio (SAR) and potassium adsorption ratio (PAR), in the soil solution. Therefore, the use of the mulch did not affect the first three parameters. The protein and nutrient contents: K+, Ca+2, P, Mg+2 e Cu+2, in amaranth grains, were improved by tillage condition. The raceme residues showed chemical/nutritional composition that makes advantageous its application in animal ration. In this context, it follows that amaranth tolerate the saline stress, of the irrigation water, until 4.500 dS m-1, temperature and relative humidity of the air predominant in the experimental environment
Resumo:
Recently, global demand for ethanol fuel has expanded very rapidly, and this should further increase in the near future, almost all ethanol fuel is produced by fermentation of sucrose or glucose in Brazil and produced by corn in the USA, but these raw materials will not be enough to satisfy international demand. The aim of this work was studied the ethanol production from cashew apple juice. A commercial strain of Saccharomyces cerevisiae was used for the production of ethanol by fermentation of cashew apple juice. Growth kinetics and ethanol productivity were calculated for batch fermentation with different initial sugar (glucose + fructose) concentration (from 24.4 to 103.1 g.L-1). Maximal ethanol, cell and glycerol concentrations (44.4 g.L-1, 17.17 g.L-1, 6.4 g.L-1, respectively) were obtained when 103.1 g.L-1 of initial sugar concentration were used, respectively. Ethanol yield (YP/S) was calculated as 0.49 g (g glucose + fructose)-1. Pretreatment of cashew apple bagasse (CAB) with dilute sulfuric acid was investigated and evaluated some factors such as sulfuric acid concentration, solid concentration and time of pretreatment at 121°C. The maximum glucose yield (162.9 mg/gCAB) was obtained by the hydrolysis with H2SO4 0.6 mol.L-1 at 121°C for 15 min. Hydrolysate, containing 16 ± 2.0 g.L-1 of glucose, was used as fermentation medium for ethanol production by S. cerevisiae and obtained a ethanol concentration of 10.0 g.L-1 after 4 with a yield and productivity of 0.48 g (g glucose)-1 and 1.43 g.L-1.h-1, respectively. The enzymatic hydrolysis of cashew apple bagasse treated with diluted acid (CAB-H) and alkali (CAB-OH) was studied and to evaluate its fermentation to ethanol using S. cerevisiae. Glucose conversion of 82 ± 2 mg per g CAB-H and 730 ± 20 mg per g CAB-OH was obtained when was used 2% (w/v) of solid and loading enzymatic of 30 FPU/g bagasse at 45 °C. Ethanol concentration and productivity was achieved of 20.0 ± 0.2 g.L-1 and 3.33 g.L-1.h-1, respectively when using CAB-OH hydrolyzate (initial glucose concentration of 52.4 g.L-1). For CAB-H hydrolyzate (initial glucose concentration of 17.4 g.L-1), ethanol concentration and productivity was 8.2 ± 0.1 g.L-1 and 2.7 g.L-1.h-1, respectively. Hydrolyzates fermentation resulted in an ethanol yield of 0.38 g/g glucose and 0.47 g/g glucose, with pretreated CABOH and CAB-H, respectively. The potential of cashew apple bagasse as a source of sugars for ethanol production by Kluyveromyces marxianus CE025 was evaluated too in this work. First, the yeast CE025 was preliminary cultivated in a synthetic medium containing glucose and xylose. Results showed that it was able to produce ethanol and xylitol at pH 4.5. Next, cashew apple bagasse hydrolysate (CABH) was prepared by a diluted sulfuric acid pre-treatment. The fermentation of CABH was conducted at pH 4.5 in a batch-reactor, and only ethanol was produced by K. marxianus CE025. The influence of the temperature in the kinetic parameters was evaluated and best results of ethanol production (12.36 ± 0.06 g.L-1) was achieved at 30 ºC, which is also the optimum temperature for the formation of biomass and the ethanol with a volumetric production rate of 0.25 ± 0.01 g.L-1.h-1 and an ethanol yield of 0.42 ± 0.01 g/g glucose. The results of this study point out the potential of the cashew apple bagasse hydrolysate as a new source of sugars to produce ethanol by S. cerevisiae and K. marxianus CE025. With these results, conclude that the use of cashew apple juice and cashew apple bagasse as substrate for ethanol production will bring economic benefits to the process, because it is a low cost substrate and also solve a disposal problem, adding value to the chain and cashew nut production
Resumo:
This work aims for the evaluation of Cruzeta Irrigated Perimeter, RN, which consists in the efficient use of water for agricultural production. The goal is looking for the available quantity of water for supplying required demands for adequate and economically viable cultures for the region. It is supposed that regional community water is supplied by pipelines from sources located outside of the region. From this study it is recommended the implantation of adequate installments for culture management in accordance with the availability of water resources and others conditionings. It must be considered the intensity of rainy and drought seasons in order to adjust the cultivated area and equipments to be operated, and also, the use of operating models and simulations in order to establish alert levels and eventually, reduction of irrigated area. Based on obtained data it is proposed the cultivation of different types of non-permanent cultures so that temporary cultures would be extensively produced in periods of abundant reservoir storage water permitting the transformation of storage water in storage culture products and few or no production in severe drought periods. This is the basic premise for sustainable agricultural development for Brazilian semiarid region
Resumo:
Flowering is a process marked by switch of shoot apical meristem to floral meristem, and it involves a complex regulation by endogenous and environmental factors. Analyses of key flowering genes have been carried out primarily in Arabidopsis thaliana and have provided a foundation for understanding the underlying molecular genetic mechanisms controlling different aspects of floral development. Several homologous have been found in other species, but for crops species such as tomatoes this process is not well known. The aim of this work was to use the genetic natural variation associated to the flowering process and use molecular tools such as subtractive libraries and real time PCR in order to identify and analyze the expression from genes that may be associated to flowering in these two species: L. esculentum cv Micro-Tom and L. pimpinellifolium. Our results showed there were identified many genes related to vegetative and possibly to the flowering process. There were also identified many sequences that were unknown. We ve chosen three genes to analyze the expression by real time PCR. The histone H2A gene gave an expression higher in L. pimpinellifolium, due to this the expression of this gene may be associated to flowering in this specie. It was also analyzed the expression of an unknown gene that might be a key factor of the transition to flowering, also in L. pimpinellifolium. For the elongation factor 1-α expression, the expression results were not informative, so this gene may have a constitutive expression in vegetative and flowering state. The results observed allowed us to identify possible genes that may be related to the flowering process. For further results it will be necessary a better characterization of them.
Resumo:
The total number of prokaryotic cells on Earth has been estimated at 4 to 6x1030 and only about 1% of microorganisms present in the environment can be cultivated by standard techniques of cultivation and plating. Therefore, it is a huge biological and genetic pool that can be exploited, for the identification and characterization of genes with biotechnological potential. Within this perspective, the metagenomics approach was applied in this work. Functional screening methods were performed aiming to identify new genes related to DNA repair and / or oxidative stress resistance, hydrocarbon degradation and hydrolytic activities (lipase, amylase and protease). Metagenomic libraries were built utilizing DNA extracted from soil samples collected in João Câmara RN. The libraries were analyzed functionally using specific substrate containing solid medium (hydrolytic activity), supplemented with H2O2 (DNA repair and / or resistance to oxidative stress) and liquid medium supplemented with light Arabian oil (activity, degradation of hydrocarbons). After confirmation of activity and exclusion of false-positive results, 49 clones were obtained, being 2 positive for amylase activity, 22 resistant to oxidative stress generated by H2O2 and 25 clones active for hydrocarbons degradation. Analysis of the sequences showed hypothetical proteins, dienelactona hydrolase, DNA polymerase, acetyltransferase, phosphotransferase, methyltransferase, endonucleases, among other proteins. The sequence data obtained matched with the functions tested, highlighting the success of metagenomics approaches combined with functional screening methods, leading to very promising results
Resumo:
The objective of this study was to evaluate the quality of housing and the physical and chemical characteristics of meat from sheep raised on pasture Brachiaria brizantha and Panicum maximum. The experiment was conducted in the physical area of the Study Group on Forage (GEFOR), located in the Academic Unit Specialized in Agricultural Sciences - Federal University of Rio Grande do Norte - UFRN in Macaíba, RN, Brazil. We used 32 lambs SPRD, obtained from herds in the state, with liveweight (LW) of 24.5 kg were assigned randomly to four treatments consisting of tropical grasses, two cultivars of Brachiaria brizantha, Marandu and Piatã, and two of Panicum maximum, Aruana and Massai. The experimental area was 2.88 ha, divided into 4 paddocks of 0.72 ha, where each picket consisted of a farm and was divided into six plots of 0.12 ha, where the animals remained under rotational grazing. The period of adaptation to the pickets was seven days. At the beginning of the experiment the animals were weighed, identified with plastic earrings and necklaces colored according to the treatment, and treated against. The lambs were loose in the paddock at 8 am and collected at 16 hours, which returned to collective pens. During the time of grazing animals had free access to mineral supplement with monensin Ovinofós ® and water. Before entering the paddocks of pasture were sampled to characterize the chemical composition. Every seven days occurred at weighing, with fasting, to monitor the weight development. Cultivars Marandu, Aruana, Piatã and Massai were grazed for 133, 129, 143 and 142 days, respectively, until the lambs reach slaughter weight. Arriving at 32 kg lambs were evaluated subjectively for body condition score by, passed through fasting period, diet and water for 16 hours were slaughtered. Measurements were made in the inner and outer casings in addition to subjective evaluations regarding muscling, finish and quantity of pelvic-renal fat, then each was divided longitudinally into two half-carcases and cuts were made in the commercial left half, and after heavy calculated their income. Between the 12th and 13th thoracic vertebrae, was performed a cut to expose the cross section of the Longissimus dorsi, which was drawn on the rib eye area (REA) in transparent film. Fat thickness and extent of AOL GR were determined using a caliper. A tissue composition was determined by dissection of the legs. Analyzes were performed physical (color, cooking loss and shear force) and chemical composition of meat (moisture, ash, protein and lipids) in Longissimus dorsi muscle. Grazing tropical grass Brachiaria brizantha cvs. Marandu and Piatã and Panicum maximum cvs. Aruana and Massai can be used for lambs SRPD in the rainy season, because not alter the physico-chemical and chemical composition of meat
Resumo:
The shrimp Litopenaeus vannamei has been grown in highly variable environments, especially in relation to salinity and water temperature. The adjustment to such conditions mainly involves changes in behavior, physiology, particularly in the immune response. This may consequently reduce the welfare of these animals. Despite the widespread farming of the species, little is known about their behavioral and physiological responses under stressful conditions. Thus, the objective of this study was to assess the influence of different salinities and temperatures in the behavior of the marine shrimp L. vannamei, and its relation to the total hemocytes count. In the laboratory, juvenile shrimp were kept in glass aquaria with a closed water recirculation system, continuous aeration and filtration, and under a 12:12 h light/dark cycle. Behavioral observations occurred 1, 4, 7 and 10 h after the start of each phase (light or dark). To assess the influence of salinity, shrimp were first acclimated and then observed at 2, 30 or 50 ppm salinity water, while temperatures tested were 18, 28 and 33 ° C. At the end of each experiment (30 days), shrimp hemolymph was collected for subsequent total hemocytes count (THC), a parameter used to assess stress. In general, feeding behavior was modified under lower salinity and temperature, with reduced values in feeding, exploration and digestive tract filling. Inactivity and burrowing were prevalent under extreme conditions water salinity and temperature, respectively: 2 and 50 ppm and 18 and 33 ° C; crawling was also less frequent under these conditions. In regards to light/dark cycle, shrimp were more active during the dark phase (crawling and swimming), while burrowing was higher during the light phase, regardless of salinity or temperature of the water. Inactivity behavior did not vary according to the light/dark cycle. Moreover, the total hemocytes count (THC) was reduced under 2 and 50 ppm salinity and 18 ° C temperature. Farming of L. vannamei under extremely low or high salinities and low temperatures is harmful. This suggests the species must be cultivated in salinities closer to those of the sea as well as at high temperatures, which seems to be ideal for a management focused on animal welfare, therefore, producing healthier shrimp
Resumo:
A number of evidences show the influence of the growth of injured nerve fibers in Peripheral Nervous System (PNS) as well as potential implant stem cells (SCs) to make it more suitable for nerve regeneration medium. In this perspective, this study aimed to evaluate the plasticity of mesenchymal stem cells from bone marrow of mice in the presence of culture medium conditioned with facial nerve explants (D-10) and fibroblast growth factor-2 (FGF-2). In this perspective, the cells were cultivated only with DMEM (group 1), only with D-10(group 2), only with FGF-2(group 3) or with D-10 and FGF-2(group 4). The growth and morphology were assessed over 72 hours. Quantitative phenotypic analysis was taken from the immunocytochemistry for GFAP, OX-42, MAP-2, β-tubulin III, NeuN and NF-200 on the fourth day of cultivation. Cells cultured with conditioned medium alone or combined with FGF-2 showed distinct morphological features similar apparent at certain times with neurons and glial cells and a significant proliferative activity in groups 2 and 4 throughout the days. Cells cultived only with conditioned medium acquired a glial phenotype. Cells cultured with FGF-2 and conditioned medium expressed GFAP, OX-42, MAP-2, β-tubulin III, NeuN and NF-200. On average, area and perimeter fo the group of cells positive for GFAP and the área of the cells immunostained for OX-42 were higher than those of the group 4. This study enabled the plasticity of mesenchymal cells (MCs) in neuronal and glial nineage and opened prospects for the search with cell therapy and transdifferentiation
Resumo:
Shrimp culture represents an important activity to brazilian economy. The northeastern region has presented high levels of production because of its climatic conditions. An important factor for the activity´s major development is related to the introduction of the species Litopenaeus vannamei. The use of an exotic species can disturb the ecosystem. In the last decades, L. vannamei has been the only species cultivated in Brazilian farms, there not being an alternative species for shrimp culture. So, there is an urgent need to developing new studies with the native species, which might represent an alternative concerning shrimp production, with emphasis on Farfantepenaeus subtilis. Another important aspect related to the activity is feeding management, once it is quite usual that feed offer on the pond does not take into account either the species´ physiology and behavior or the influence of environmental variables, such as light cycle and substrate. That knowledge may optimize management and so reduce the impact of effluents in the environment. This study´s objective was characterizing feeding behavior of F. subtilis in laboratory. For that, an ethogram was developed, using 20 wild animals which were observed through ad libitum and all occurrences methods. Two experiments were developed in order to register feeding behavior on different substrates, along 15 days, each. In the first experiment, 40 animals were distributed in eight aquaria, half being observed during the light phase of the 24 hour cycle and the other half in the dark phase, both in halimeda substrate. In the second experiment, 20 animals were distributed in four aquaria, under similar conditions as the previous ones, but in sand substrate. In both experiments, animals were observed respectively one, four, seven and ten hours after the beginning of the phase, for light phase, for the dark phase, in ten minute observation windows, before and immediately after feed offer. The following behaviors were registered: feed ingestion, ingestion of other items, inactivity, exploration, vertical exploration, swimming, crawling, digging, burrowing, and moving by the animals. Observation windows after feed offer also included latency to reach the tray and to ingest feed. Nineteen behaviors were described for the species. F. subtilis presented more behavioral activities in halimeda substrate even in the light phase, while burrowing was predominant in sand substrate. In both substrates, moving, crawling and exploration were more frequent after feed offer, but inactivity and burrowing were more frequent before that. Feed ingestion was more frequent in halimeda, both in light and dark phases. Weight gain was also more prominent in that substrate. In sand substrtate, ingestion was more frequent in the dark phase, which suggests that higher granulometry facilitates feed ingestion in F. subtilis juveniles. Our results demonstrate the importance of studies for the better knowledge of the species, specially its response to environmental stimuli, in order to improve animal management
Resumo:
Carciniculture in Brazil occupies world-wide prominence due to shrimp culture, and the state of Rio Grande do Norte has presented the best results in the culture of the Litopenaeus vannamei in the last decade. This species has been shown to adapt easily to different environments and is between the five most cultivated penaeids of the world. The ponds are usually constructed in areas close to water courses and estuaries. Stock density and substrate ponds can pollute environment, causing losses in the growth and survival of the shrimps, being considered stress factors. Shrimps in inadequate densities and substrates can result reduced productivity of the farm; and favor diseases. So, it is important to verify how these variables influence the development of the animals in the culture farms. Our objective was to study the influence of the type of substrate and the stock density on the behavior and haemocyte count of the L. vannamei. Individually marked juvenile shrimps were kept in aquaria with 30 L of seawater and continuous aeration, in 12L-12D photoperiod. They were observed through Ad libitum and focal sampling instantaneous methods during thirty days, five times per week, six times per day (8:00 to 18:00) in windows of 15 minutes every two hours. The marking of carapace permitted quantifying molting and the feeding was supplied three times a day. Two experiments were carried out: the first one tested animals in the three different substrates (fine sand, smaller rocks-SPP and biggest rocks-SGR) with 33 shrimp/m2. In the second one, the animals were tested in three stock densities (26, 52 and 66 shrimp/m2) in fine sand substrate. At the end of experiment, biometry (first and second ones) and haemocyte count (second one) were made. The behavior of the L. vannamei seems to have been influenced by substrate and stocking density. In low granulometry of the substrate; the exploratory behavior became more frequent and inactivity of the shrimps was reduced. Burrowing was registered in sand substrate, specially in the initial period of the day. Cleaning was gradually higher along the day, presenting the biggest levels as the dark phase approached. The ingestion of feeding was more frequent in low density, and the animals were bigger and heavier at the end of the experiment. In the fine sand condition, the animals presented better growth, probably associated with the burrowing. The molting was equivalent in all types of substrate, but it was more frequent in high densities. Mortality of the shrimps was more frequent in high densities, and cannibalism and diseases were also registered in that condition. The clinical signals were similar to the ones of infectious mionecrosis (IMNV), generally associated with environment and physical stress. The haemocyte count was low for the hematologic standards of the penaeid, which we attributed for greater dilution of haemolymph in the postmolting phase. Smaller shrimps presented lower levels of haemocytes in relation to the bigger animals, count was also low in 26 shrimp/m2 density. The study demonstrates that stocking density and the granulometry of the substrate can affect the welfare, the health and the behavior of the L. vannamei. The sand substrate and low stocking density can be important tools in the management systems of shrimp production