999 resultados para CNPQ::CIENCIAS EXATAS E DA TERRA::GEOCIENCIAS::GEOFISICA E GEODINÂMICA
Resumo:
This thesis presents and discusses the results of the various seismic areas in the State of Pernambuco, with the aim of having a vision of regional seismicity and its causes. To the papers published in journals were added two new original works submitted to international journals, dealing with seismic areas located in the counties of São Caetano, Cupira, and Agrestina. All seismic areas mentioned in this thesis are located on the Pernambuco Lineament and its surroundings (both in branches or single faults within 40 km of it). The Pernambuco Lineament is a Neoproterozoic shear zone of continental-scale that deformed the Borborema Province, and presents as branches, shear zones with NE-SW direction. The new submitted papers are from the analysis of data collected by three local networks of stations that operated in the following areas: network SO07 (seismicity in the district of Santa Luzia - São Caetano, 2007), network BM10 (data from seismic areas of Serra Verde ( Cupira) and Barra do Chata (Agrestina), in 2010), network SO10 (seismicity near the urban center of São Caetano in 2010). These data were used for determining the hypocenters and focal mechanisms in order to discuss the relationship between the seismicity and geological features of the area. The new mechanisms obtained, as well as the previously published allowed the determination of the direction of the average stress in the region. The direction of stress in the region involving the various seismic areas, now or previously studied, is quite stable and approximate EW direction (SHmax). The correlation between seismicity and geological features is observed on the lineament and north of it. In the south (Cupira and Agrestina), in seismic areas nearby shear zones NE-SW, there is no correlation and seismogenic EW normal faults are active and its motion is compatible with regional stresses. It is probable that these active faults are more recent than the Neoproterozoic, probably of the Cretaceous period, when the last great movement of the Pernambuco Lineament occurred
Resumo:
This paper presents models of parameters of Sea Surface Layer (SSL), such as chlorophyll-a, sea surface temperature (SST), Primary Productivity (PP) and Total Suspended Matter (TSM) for the region adjacent to the continental shelf of Rio Grande do Norte (RN), Brazil. Concentrations of these parameters measured in situ were compared in time quasi-synchronous with images AQUA-MODIS between the years 2003 to 2011. Determination coefficients between samples in situ and bands reflectance sensor AQUA-MODIS were representative. From that, concentrations of SSL parameters were acquired for the continental shelf of the RN (eastern and northern) analyzing the geographic distribution of variation of these parameters between the years 2009-2012. Geographical and seasonal variations mainly influenced by global climate phenomena such as El Niño and La Niña, were found through the analysis of AQUA-MODIS images by Principal Components Analysis (PCA). Images show qualitatively the variance and availability of TSM in the regions, as well as their relationship with coastal erosion hotspots, monitored along the coast of the RN. In one of the areas identified as being of limited availability of TSM, we developed a methodology for assessment and evaluation of Digital Elevation Models (DEM) of beach surfaces (emerged and submerged sections) from the integration of topographic and bathymetric data measured in situ and accurately georeferenced compatible to studies of geomorphology and coastal dynamics of short duration. The methodology consisted of surveys with GNSS positioning operated in cinematic relative mode involved in topographic and bathymetric executed in relation to the stations of the geodetic network of the study area, which provided geodetic link to the Brazilian Geodetic System (GBS), univocal , fixed, and relatively stable over time. In this study Ponta Negra Beach, Natal / RN, was identified as a region with low variance and availability of MPS in the region off, as characterized by intense human occupation and intense coastal erosion in recent decades, which presents potential of the proposed methodology for accuracy and productivity, and the progress achieved in relation to the classical methods of surveying beach profiles
Resumo:
This thesis presents the results of application of SWAN Simulating WAves Nearshore numerical model, OF third generation, which simulates the propagation and dissipation of energy from sea waves, on the north continental shelf at Rio Grande do Norte, to determine the wave climate, calibrate and validate the model, and assess their potential and limitations for the region of interest. After validation of the wave climate, the results were integrated with information from the submarine relief, and plant morphology of beaches and barrier islands systems. On the second phase, the objective was to analyze the evolution of the wave and its interaction with the shallow seabed, from three transverse profiles orientation from N to S, distributed according to the parallel longitudinal, X = 774000-W, 783000-W e 800000-W. Subsequently, it was were extracted the values of directional waves and winds through all the months between november 2010 to november 2012, to analyze the impact of these forces on the movement area, and then understand the behavior of the morphological variations according to temporal year variability. Based on the results of modeling and its integration with correlated data, and planimetric variations of Soledade and Minhoto beach systems and Ponta do Tubarão and Barra do Fernandes barrier islands systems, it was obtained the following conclusions: SWAN could reproduce and determine the wave climate on the north continental shelf at RN, the results show a similar trend for the measurements of temporal variations of significant height (HS, m) and the mean wave period (Tmed, s); however, the results of parametric statistics were low for the estimates of the maximum values in most of the analyzed periods compared data of PT 1 and PT 2 (measurement points), with alternation of significant wave heights, at times overrated with occasional overlap of swell episodes. By analyzing the spatial distribution of the wave climate and its interaction with the underwater compartmentalization, it was concluded that there is interaction of wave propagation with the seafloor, showing change in significant heights whenever it interacts with the seafloor features (beachrocks, symmetric and asymmetric longitudinal dunes, paleochannel, among others) in the regions of outer, middle and inner shelf. And finally, it is concluded that the study of the stability areas allows identifications of the most unstable regions, confirming that the greatest range of variation indicates greater instability and consequent sensitivity to hydrodynamic processes operating in the coastal region, with positive or negative variation, especially at Ponta do Tubarão and Barra do Fernandes barrier islands systems, where they are more susceptible to waves impacts, as evidenced in retreat of the shoreline
Resumo:
The studied area is geologically located in the Northern Domain of the Borborema Province (Northeast Brazil), limited to the south by the Patos shear zone. Terranes of the Jaguaribeano system are dominant, flanked by the Piranhas (E and S sides) and Central Ceará (NE side) terranes. Its basement comprises gneiss -migmatite terrains of Paleoproterozoic to Archean age (2.6 to 1.9 Ga old), overprinted by neoproterozoic to cambrian tectonotherma l events. Narrow supracrustal belts ( schist belts) display a 1.6 to 1.8 Ga age, as shown by whole - rock Rb-Sr and zircon U-Pb and Pb/Pb dates in acid metavolcanics which dominate in the lower section of these sequences, and in coeval metaplutonics (granitic augen gneisses). From the stratigraphic point of view, three Staterian belts are recognized: 1. Orós Belt - made up by the Orós Group, subdivided in the Santarém (predominantly pure to impure quartzites, micaschists and metacarbonates) and Campo Alegre (metandesites, metabasalts, metarhyolites and metarhyodacites, interlayered with metatuffs and metasediments) formations, and by the Serra do Deserto Magmatic Suite (granitic augen gneisses). 2. Jaguaribe Belt - its lithostratigrahic-lithodemic framework is similar to the one of the Orós Belt, however with a greater expression of the volcano -plutonic components (Campo Alegre Formation and Serra do Deserto Magmatic Suite). The Peixe Gordo Sequence, separately described, is also related to this belt and contain s metasedimentary, metavolcanic (with subordinated volcanoclastics) and metaplutonic units. The first one correlated to the Orós Group and the latter the Serra do Deserto Magmatic Suite. 3. Western Potiguar Belt - represented by the Serra de São José Gro up, subdivided in the Catolezinho (biotite -amphibole gneisses with intercalations of metacarbonates, calcsilicate rocks, amphibolites and quartzite beds to the top) and Minhuins (quartzites, micaschists, metaconglomerates, calcsilicate rocks, acid to the b asic metavolcanics and metatuffs) formations. Its late Paleoproterozoic (Staterian) age was established by a Pb/Pb date on zircons from a granitic orthogneiss of the Catolezinho Formation. The petrographic characteristics and sedimentary structures of the Santarém Formation of the Orós Group point to deltaic to shallow marine depositional systems, overlain by deep water deposits (turbidites). The geodynamic setting of this region encompassed a large depositional basin, probably extending to the east of the Portalegre shear zone and west of the Senador Pompeu shear zone, with possible equivalents in the Jucurutu Formation of the Seridó Belt and in the Ceará Group of central Ceará. The Arneiróz Belt, west Ceará, displays some stratigraphic features and granito ids geochemically akin to the ones of the Orós Belt. The evolutionary setting started with an extensional phase which was more active in the eastern part of this domain (Western Potiguar and part of the Jaguaribe belts), where the rudite and psamite sedime ntation relates to a fluviatile rift environment which evolved to a prograding deltaic system to the west (Orós Group). The basaltic andesitic and rhyolitic volcanics were associated to this extensional phase. During this magmatic event, acid magmas also crystallized at plutonic depths. The Orós Group illustrates the environmental conditions in the western part of this domain. Later on, after a large time gap (1.6 to 1.1 Ga), the region was subjected to an extensional deformational episode marked by 900 Ma old (Sm-Nd data) basic rocks, possibly in connection with the deposition of the Cachoeirinha Group south of the Patos shear zone. In the 800 to 500 Ma age interval, the region was affected by important deformational and metamorphic events coupled with in trusion of granitic rocks of variable size (dykes to batholiths), related to the Brasiliano/Pan -African geotectonic cycle. These events produced structural blocks which differentiate, one from the other, according to the importance of anatectic mobilizatio n, proportion of high-grade supracrustals and the amount of neoproterozoic -cambrian granitoid intrusions. On this basis, a large portion of the Jaguaretama Block/Terrane is relatively well preserved from this late overprint. The border belts of the Jagua retama Block (Western Potiguar and Arneiroz) display kyanite-bearing (medium pressure) mineral associations, while in the inner part of the block there is a north-south metamorphic zoning marked by staurolite or sillimanite peak metamorphic conditions. Regarding the deformations of the Staterian supracrustal rocks, second and third phases were the most important, diagnosed as having developed in a progressive tectonic process. In the general, more vigorous conditions of PT are related to the interval tardi - phase 2 early-phase 3, whose radiometric ages and regional structuring indicators places it in the Brasiliano/Pan-African Cycle. In the Staterian geodynamic setting of Brazilian Platform , these sequences are correlated to the lower Espinhaço Supergroup (p.ex., Rio dos Remédios and Paraguaçu groups, a paleproterozoic rift system in the São Francisco Craton), the Araí and Serra da Mesa groups (north of Goiás, in the so -called Goiás Central Massif), and the Uatumã Group (in the Amazonian Craton). Granitic ( augen gneisses) plutonics are also known from these areas, as for example the A-type granites intrusive in the Araí and Serra da Mesa groups, dated at 1.77 Ga. Gravimetric and geological data place the limits of the Jaguaribeano System (terranes) along the Senador Pompeu Shear Zone (western border) and the Portalegre- Farias Brito shear zone (eastern and southern). However, the same data area not conclusive as regards the interpretation of those structures as suture of the terrane docking process. The main features of those shear zones and of involved lothological associations, appear to favour an intracontinental transpressional -transcurrent regime, during Neoproterozoic-Cambrian times, marking discontinuities along which different crustal blocks were laterally dispersed. Inside of this orogenic system and according to the magnetic data (total field map), the most important terrane boundary appears to be the Jaguaribe shear zone. The geochronological data, on some tectonostratigraphic associations (partly represented by the Ceará and Jucurutu groups), still at a preliminary level, besides the lack of granitic zonation and other petrotectonic criteria, do not allow to propose tectonic terrane assembly diagrams for the studied area
Resumo:
This project was developed as a partnership between the Laboratory of Stratigraphical Analyses of the Geology Department of UFRN and the company Millennium Inorganic Chemicals Mineração Ltda. This company is located in the north end of the paraiban coast, in the municipal district of Mataraca. Millennium has as main prospected product, heavy minerals as ilmenita, rutilo and zircon presents in the sands of the dunes. These dunes are predominantly inactive, and overlap the superior portion of Barreiras Formation rocks. The mining happens with the use of a dredge that is emerged at an artificial lake on the dunes. This dredge removes sand dunes of the bottom lake (after it disassembles of the lake borders with water jets) and directs for the concentration plant, through piping where the minerals are then separate. The present work consisted in the acquisition external geometries of the dunes, where in the end a 3D Static Model could be set up of these sedimentary deposits with emphasis in the behavior of the structural top of Barreiras Formation rocks (inferior limit of the deposit). The knowledge of this surface is important in the phase of the plowing planning for the company, because a calculation mistake can do with that the dredge works too close of this limit, taking the risk that fragments can cause obstruction in the dredge generating a financial damage so much in the equipment repair as for the stopped days production. During the field stages (accomplished in 2006 and 2007) topographical techniques risings were used with Total Station and Geodesic GPS as well as shallow geophysical acquisitions with GPR (Ground Penetrating Radar). It was acquired almost 10,4km of topography and 10km of profiles GPR. The Geodesic GPS was used for the data geopositioning and topographical rising of a traverse line with 630m of extension in the stage of 2007. The GPR was shown a reliable method, ecologically clean, fast acquisition and with a low cost in relation to traditional methods as surveys. The main advantage of this equipment is obtain a continuous information to superior surface Barreiras Formation rocks. The static models 3D were elaborated starting from the obtained data being used two specific softwares for visualization 3D: GoCAD 2.0.8 and Datamine. The visualization 3D allows a better understanding of the Barreiras surface behavior as well as it makes possible the execution of several types of measurements, favoring like calculations and allowing that procedures used for mineral extraction is used with larger safety
Resumo:
The research area is located on the county of Tibau do Sul, in the east coast of Rio Grande do Norte State, about 80km south of the capital Natal. The tourism represents the main income activity and Pipa beach is the most visited beach in the city, annually receives a large influx of domestic and foreign tourists. Some recent studies have reported the occurrence of coastal erosion in this littoral, being the main objective of the research, analyze the existing coastal erosion, through two methodologies, the geoenvironmental mapping and beach morphodynamics. The geoenvironmental mapping was done from oblique aerial photographs and field visits, which sought to carry out first the geomorphological mapping, with the purpose of analyzing features that suggest susceptible areas to erosion, as areas without protection of natural dunes, marine terraces, or sandstones (beach-rocks and ferruginous sandstones), areas with the presence of gullies and stretches where the sea-cliffs were in direct contact with the action of the sea, representing the beginning of the beach profile. In the morphodynamic study sought to carry out the survey of the physical and morphological characteristics, the analysis of sediment grain of the beaches and finally the analysis of the morphodynamic parameters to generate a table of risk to erosion by sector of the beach. The morphodynamic parameters were defined by the methodology proposed by Short (2006), in which considers different patterns of dynamism on beaches with characteristics favorable and unfavorable to erosive profiles. The maps indicated different levels of risk to the segments of the beaches analyzed, suggesting risk to erosion low and low to moderate only in areas north and northwest of the beaches of Madeiro and Curral, and levels of moderate and high risk sectors in the south and southeast of these beaches . The beach of Pipa showed moderate levels of risk and moderate to high at the ends and high risk to erosion in the central portion. The study of the coastal environment, its morphological evolution, and areas with problems of erosion, are of fundamental importance to assist coastal management policies, giving grants for planning activities undertaken in these regions
Resumo:
Baixo Vermelho area, situated on the northern portion of Umbuzeiro Graben (onshore Potiguar Basin), represents a typical example of a rift basin, characterized, in subsurface, by the sedimentary rift sequence, correlated to Pendência Formation (Valanginian-Barremian), and by the Carnaubais fault system. In this context, two main goals, the stratigraphic and the structural analysis, had guided the research. For this purpose, it was used the 3D seismic volume and eight wells located in the study area and adjacencies. The stratigraphic analysis of the Valanginian-Barremian interval was carried through in two distinct phases, 1D and 2D, in which the basic concepts of the sequence stratigraphy had been adapted. In these phases, the individual analysis of each well and the correlation between them, allowed to recognize the main lithofacies, to interpret the effective depositional systems and to identify the genetic units and key-surfaces of chronostratigraphic character. The analyzed lithofacies are represented predominantly by conglomerates, sandstones, siltites and shales, with carbonate rocks and marls occurring subordinately. According to these lithofacies associations, it is possible to interpret the following depositional systems: alluvial fan, fluvio-deltaic and lacustrine depositional systems. The alluvial fan system is mainly composed by conglomerates deposits, which had developed, preferentially in the south portion of the area, being directly associated to Carnaubais fault system. The fluvial-deltaic system, in turn, was mainly developed in the northwest portion of the area, at the flexural edge, being characterized by coarse sandstones with shales and siltites intercalated. On the other hand, the lacustrine system, the most dominant one in the study area, is formed mainly by shales that could occur intercalated with thin layers of fine to very fine sandstones, interpreted as turbidite deposits. The recognized sequence stratigraphy units in the wells are represented by parasequence sets, systems tracts and depositional sequences. The parasequence sets, which are progradational or retrogradational, had been grouped and related to the systems tracts. The predominance of the progradation parasequence sets (general trend with coarsening-upward) characterizes the Regressive Systems Tract, while the occurrence, more frequently, of the retrogradation parasequence sets (general trend with finning-upward) represents the Transgressive System Tract. In the seismic stratigraphic analysis, the lithofacies described in the wells had been related to chaotic, progradational and parallel/subparallel seismic facies, which are associated, frequently, to the alluvial fans, fluvial-deltaic and lacustrine depositional systems, respectively. In this analysis, it was possible to recognize fifteen seismic horizons that correspond to sequence boundaries and to maximum flooding surfaces, which separates Transgressive to Regressive systems tracts. The recognition of transgressive-regressive cycles allowed to identify nine, possibly, 3a order deposicional sequences, related to the tectonic-sedimentary cycles. The structural analysis, in turn, was done at Baixo Vermelho seismic volume, which shows, clearly, the structural complexity printed in the area, mainly related to Carnaubais fault system, acting as an important fault system of the rift edge. This fault system is characterized by a main arrangement of normal faults with trend NE-SO, where Carnaubais Fault represents the maximum expression of these lineations. Carnaubais Fault corresponds to a fault with typically listric geometry, with general trend N70°E, dipping to northwest. It is observed, throughout all the seismic volume, with variations in its surface, which had conditioned, in its evolutive stages, the formation of innumerable structural features that normally are identified in Pendencia Formation. In this unit, part of these features is related to the formation of longitudinal foldings (rollover structures and distentional folding associated), originated by the displacement of the main fault plan, propitiating variations in geometry and thickness of the adjacent layers, which had been deposited at the same time. Other structural features are related to the secondary faultings, which could be synthetic or antithetic to Carnaubais Fault. In a general way, these faults have limited lateral continuity, with listric planar format and, apparently, they play the role of the accomodation of the distentional deformation printed in the area. Thus, the interaction between the stratigraphic and structural analysis, based on an excellent quality of the used data, allowed to get one better agreement on the tectonicsedimentary evolution of the Valanginian-Barremian interval (Pendência Formation) in the studied area
Resumo:
This dissertation presents a study on crustal seismic anisotropy in Cascavel - CE. The earthquake data employed here are from the Seismological Laboratory at Universidade Federal do Rio Grande do Norte (UFRN) and were colected from 29 September 1997 to 05 march 1998 using six three-component digital seismographic stations. In general, the cause of the observed seismic anisotropy in many regions of the world is interpreted in terms of fluid-filled stress aligned microcracks in the rockmass (EDA). In other words, the polarisation direction of the faster shear-wave splitting is parallel to SHmax. However, other researches on seismic anisotropy carried out in NE Brazil have shown a remarkable consistency of the faster shear-wave polarisation direction with the direction of the Precambrian fabric. The present work is another case study that is used to investigate this issue. In order to map the Precambrian fabric we used aeromagnetic data, since the study area is mostly covered with sediments (up to 50m thick) and in-situ field mapping would be very difficult to be carried out. According to the results from the present research, the observations of the faster shear-wave polarisation directions in two seismographic stations in Cascavel region are best explained in the framework of EDA. For the remaining two stations, the observed anisotropy may have two interpretions: (i) - 90_ flips of the direction of polarisation of the faster shear-wave, since that the event-to-station ray path would be through the fracture zone and hence would travel under a higher pore pressure and (ii) - the observed seismic anisotropy would agree with the direction on the ductile Precambrian fabric
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
This work shows a integrated study of modern analog to fluvial reservoirs of Açu Formation (Unit 3). The modern analog studied has been Assu River located in the same named city, Rio Grande do Norte State, Northeast of Brazil. It has been developed a new methodology to parameterizating the fluvial geological bodies by GPR profile (by central frequency antennas of 50, 100 and 200 MHz). The main parameters obtained were width and thickness. Still in the parameterization, orthophotomaps have been used to calculate the canal sinuosity and braided parameters of Assu River. These information are integrated in a database to supply input data in 3D geological models of fluvial reservoirs. It was made an architectural characterization of the deposit by trench description, GPR profile interpretation and natural expositions study to recognize and describe the facies and its associations, external and internal geometries, boundary surfaces and archtetural elements. Finally, a three-dimensional modeling has been built using all the acquired data already in association with real well data of a reservoir which Rio Assu is considered as analogous. Facies simulations have been used simple kriging (deterministic algorithm), SIS and Boolean (object-based, both stochastics). And, for modeling porosities have used the stochastic algorithm SGS
Resumo:
Crustal thickness and VP/VS estimates are essential to the studies of subsurface geological structures and also to the understanding of the regional tectonic evolution of a given area. In this dissertation, we use the Langston´s (1979) Receiver Function Method using teleseismic events reaching the seismographic station with angles close to the vertical. In this method, the information of the geologic structures close to the station is isolated so that effects related to the instrument response and source mechanics are not present. The resulting time series obtained after the deconvolution between horizontal components contains the larger amplitude referring to the P arrival, followed by smaller arrival caused by the reverberation and conversion of the P-wave at the base of the crust. We also used the HK-Stacking after Zhu & Kanamori (2000) to obtain crustal thickness and Vp/VS estimates. This method works stacking receiver functions so that the best estimates of crustal thickness and Vp/VS are found when the direct P, the Ps wave and the first multiple are coherently stacked. We used five broadband seismographic stations distributed over the Borborema Province, NE Brazil. Crustal thickness and Vp/VS estimates are consistent with the crust-mantle interface obtained using gravity data. We also identified crutal thickening in the NW portion of the province, close to Sobral/CE. Towards the center-north portion of the province, there is an evident crustal thinning which coincides with a geological feature consisting of an alignment of sedimentary basins known as the Cariris-Potiguar trend. Towards the NE portion of the province, in Solânea/PB and Agrestina/PE regions, occurs a crustal thickening and a systematic increase in the VP/VS values which suggest the presence of mafic rocks in the lower crust also consistent with the hypothesis of underplating in the region
Resumo:
The segment of Carnaubais Fault located in the southeasthern portion of Guamaré Graben (Potiguar Basin) was studied. Several structures were detected and some of them strongly suggest that the last movements in Carnaubais Fault are of Neotectonic age. The study comprises an integrated interpretation of geologic, geomorphologic and geophysical data (gravimetry, magnetometry, resistivity, and self potential methods). According to the size of the studied areas, two approaches were used in this research. The first approach is of a regional nature and was conducted in an area, hereafter named Regional Area, having approximately 6,000 km2 and localized in the northern portion of Rio Grande do Norte state, around Macau city. The second approach comprises detailled studies of two small areas inside the Regional Area: the Camurupim and São Bento areas. Gravimetric and topographic data were used in the Regional Area. A separation into regional and residual components were conducted both on gravimetric and topographic data. The interpretation of the residual component of the gravimetric data allows a precise mapping of the borders of the Guamaré Graben. The regional component features of the topographic data are controlled by the pair of conjugate faults composed by the Carnaubais Fault (NE direction) and the Afonso Bezerra Fault (NW direction). On the other hand, the residual component of the topographic data shows that river valleis of NW direction are sharply interrupted where they intersect Carnaubais Fault. This fact is interpreted as an evidency that the last significant moviments occured in the Carnaubais Fault. Geologic, geomorphologic and geophysical data (magnetometry, resistivity, and self potential methods) were used in the Camurupim Area. The geologic mapping allows to identify five lithophacies unities. The first two unities (from base to top) were interpreted as composing a marine (or transitional) depositional sequency while the other were interpreted is composing a continental depositional sequence. The two sequences are clearly separated of an erosional discordance. The unities grouped in the marine sequence are composed by calcarenites (Unity A) and mudstones (Unity B). Unity A was deposited in a shalow plataform while Unity B, in a tidal flat. The unities grouped in the continental sequence are composed of conglomerate (Unity C) and sandstones (Unities D and E). Unities C and D are fluvial deposits while unity E is an eolian deposit. Unities A and B can be stratigraphycally correlated with Guamaré Formation. Unities C and D present three possible correlations. They may be correlated with Tibau Formation; or with Barreiras Formation; or with a clastic sediment deposit, commonly found in some rivers of Rio Grande do Norte state, and statigraphycally positioned above Barreiras Formation. Based on the decrease of the grain sizes from base to top both on unities C and D, it is proposed that these unities are correlated with the clastic sediment above mentioned. In this case, these unities would have, at least, Pleistocenic age. Finally, it is proposed that Unity E represent an eolian deposit that sufferred recent changes (at least in the Quaternary). The integrated interpretation of hydrographic, morphologic and geophysical data from Camurupim Area shows that Carnaubais Fault is locally composed by a system of several paralel subvertical faults. The fault presenting the larger vertical slip controls the valley of Camurupim river and separates the area in two blocks; in the nothern block the top of the Jandaira limestone is deeper than in the southern block. In addition, at least one of the faults in the northern block is cutting the whole sedimentary section. Because unities C , D, and/or E may be of Quaternary age, tectonic moviments possibly occured in Carnaubais Fault during this period. Detailled geologic mapping were conducted in beachrocks found in São Bento Area. This area is located at the intersection of the coast line with the Carnaubais Fault. The detected structures in the beachrocks are very similar to those caused by fragile deformations. The structures mapped in the beachrocks are consistent with a stress field with maximun compressional stress in E-W direction and extensional stress in the N-S direction. Since the Carnaubais Fault has a NE direction, it is optimally positioned to suffer tectonic movements under the action of such stress field. In addition, the shape of the coastal line appear to be controlled by the Carnaubais Fault. Furthemore, the observed structures in Camurupim Área are consistent with this stress field. These facts are interpreted as evidences that Carnaubais Fault and beachrocks suffered coupled tectonic movements. These moviments are of Neotectonic age because the beachrocks present ages less than 16,000 years
Resumo:
This dissertation describes the igneous suites of the Japi granitoid pluton, intrusive in the Paleoproterozoic gneiss-migmatite complex of the eastern domain of the Seridó Belt, northeastern Brazil. Field relations show that the pluton is affected by strong deformation associated to the Brasiliano orogeny (known as the D3 phase) , with a NW-trending extensionalleft-hand senestral shear zone (the Japi Shear Zone, JSZ) bordering the intrusive body to the west. Four plutonic suites are found in the main pluton and as satellyte intrusions, besides Iate pegmatite and pink leucogranites. An alkaline granitoid suite, dominated by syenogranites bearing sodic augite (and subordinate hornblende), define a main elliptical intrusion. In its northern part, this intrusion is made up by concentric sheets, contrasting with a smaller rounded stock to the south. These granites display a pervasive solid-state S>L fabric developed under high T conditions, characterized by plastic deformation of quartz and feldspar. It is especially, developed along the border of the pluton, with inward dips. A regular magmatic layering is present sometimes, parallel to the tectonic foliation. The syntectonic emplacement as regards to the Brasiliano (D3) event is indicated by the common occurrence of dykes and sheets along transtensional or extensional sites of the major structure. Field relations attest to the early emplacement of the alkaline granites as regards to the other suites. A basic-to-intermediate suite occurs as a western satellyte body and occupying the southern tail of the main alkaline pluton. It comprises a wide variety of compositional terms, including primitive gabbros and gabbro-norites, differentiated to monzonitic intermediate facies containing amphibole and biotite as their main mafic phases. These rocks display transitional high-K calc-alkaline to shoshonitic affinities. Porphyritic monzogranite suítes commonly occur as dykes and minor intrusives, isolated or associated with the basic-tointermediate rocks. In the latter case, magma mingling and mixing features attest that these are contemporaneous igneous suites. These granites show K-feldspar phenocrysts and a hornblende+biotite+titanite assemblage, displaying subalkaline/monzonitic geochemical affinities. Both suites exhibit SL magmatic fabrics overprinting or transitional to solid-state D3 deformation related to the JSI. Chemical data clearly show that they are related to different parental magmas. Finally, a microgranite suite occurs along a few topographic ridges paralell to the JSI. It comprises dominantly granodiorites with a mineralogy similar to the one of the porphyritic granitoids. However, discriminant diagrams show their distinct calc-alkaline affinity. The granodiorites display an essencially magmatic fabric, even though an incipient D3 solid-state structure may be developed along the JSI. Intrusion relationships with the previous suites, as well as regards to the D3 structures, point to their Iate emplacement. All these suites are intrusive in a Paleoproterozoic, high-grade gneiss-migmatite complex affected by two previous deformation phases (D1, D2). The fabrics associated with these earlier events are folded and overprinted by the younger D3 structures along the JSZ. The younger deformation is characterized by NE-dipping foliations and N/NE-plunging stretching lineations. In the JSZ northern termination the foliation acquires an ENE orientation, containing a stretching lineation plunging to the south. Symmetric kinematic cri teria developed at this site confirms the transpressional termination of the JSZ, as also shown by orthorrombic quartz c-axis patterns. E-W-trending d extra I shear zones developed in the central part of the JSZ are interpreted as antithetic structures associated to the transtensional deformation along the JSZ. This is consistent with its extensional-transcurrent kinematics and a flat-and-ramp geometry at depth, as shown by gravimetric data. The lateral displacement of the negative residual Bouguer anomalies, as regards to the main outcropping alkaline pluton, may be modelized by other deeper-seated granite bodies. Based on numerical modelling it was possible to infer two distinct intrusion styles for the alkaline pluton. The calculated model values are consistent with an emplacement by sheeting for the northern body, as already suggested by satellyte imagery and field mapping. On the other hand, the results point to a transition towards a diapir-related style associated to the smaller. southern stock. This difference in intrusion styles may relate to intensity variations and transtensional sites of the shear deformation along the JSZ. Trace element and Sr and Nd isotopes of the alkaline granites are compatible with their derivation trom a more basic crustal source, as compared to the presently outcropping highgrade gneisses, with participation (or alternatively dominated by) of an enriched lithospheric mantle component. Like other igneous suites in the Seridó Belt, the high LlL contents and fractionated REE patterns of the basic rocks also point to an enriched mantle as the source for this kind of magmatism. Geochemical and isotope data are compatible with a lower crustal origin for the porphyritic granites. On the basis of the strong control of the JSZ on the emplacement of lower crustal (porphyritic and alkaline granites) or lithospheric mantle (basic rocks, alkaline granites or a component of them) magmas, one may infer a deep root for this structure, bearing an important role in magma extraction, transport and emplacement in the Japi region, eastern domain of the Seridó Belt
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
On the modern Continental Shelf to the north of Rio Grande do Norte state (NE Brazil) is located a paleo-valley, submerged during the last glacial sea-level lowstand, that marks continuation of the most important river of this area (Açu River). Despite the high level of exploration activity of oil industry, there is few information about shallow stratigraphy. Aiming to fill this gap, situated on the Neogene, was worked a marine seismic investigation, the development of a processing flow for high resolution data seismic, and the recognition of the main feature morphology of the study area: the incised valley of the River Açu. The acquisition of shallow seismic data was undertaken in conjunction with the laboratory of Marine Geology/Geophysics and Environmental Monitoring - GGEMMA of Federal University of Rio Grande do Norte UFRN, in SISPLAT project, where the geomorphological structure of the Rio paleovale Açu was the target of the investigation survey. The acquisition of geophysical data has been over the longitudinal and transverse sections, which were subsequently submitted to the processing, hitherto little-used and / or few addressed in the literature, which provided a much higher quality result with the raw data. Once proposed for the flow data was developed and applied to the data of X-Star (acoustic sensor), using available resources of the program ReflexW 4.5 A surface fluvial architecture has been constructed from the bathymetric data and remote sensing image fused and draped over Digital Elevation Models to create three-dimensional (3D) perspective views that are used to analyze the 3D geometry geological features and provide the mapping morphologically defined. The results are expressed in the analysis of seismic sections that extend over the region of the continental shelf and upper slope from mouth of the Açu River to the shelf edge, providing the identification / quantification of geometrical features such as depth, thickness, horizons and units seismic stratigraphyc area, with emphasis has been placed on the palaeoenvironmental interpretation of discordance limit and fill sediment of the incised valley, control by structural elements, and marked by the influence of changes in the sea level. The interpretation of the evolution of this river is worth can bring information to enable more precise descriptions and interpretations, which describes the palaeoenvironmental controls influencing incised valley evolution and preservation to provide a better comprehensive understanding of this reservoir analog system