23 resultados para BAGASSE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Provide healthier meat to consumers of pig farmers has required an adjustment of nutrition and feed management. Nutrition is a primary factor in defining the qualitative aspects of pork, because through it we can modify the fatty acid profile. The objective of this study was to analyze the effects of adding bran bagasse cashew (FBC) in diets for finishing pigs, on carcass traits and meat quality. 20 crossbred barrows with an average initial weight of 57.93 ± 3.67 kg / BW were used Diets were formulated based on corn and soybean meal containing vegetable oil, commercial core and different levels of inclusion of the bran bagasse cashew ( 0.0, 7.5 % , 15.0 % , 22.5 % and 30.0 % ) . The experimental design was a randomized block with 5 treatments and 4 replications. Quantitative, qualitative, fatty acid profile of the longissimus muscle and fat area parameters were evaluated. It was observed that with the inclusion of FBC, the parameters of carcass yield, backfat thickness, fat area had a negative linear effect relationship and meat / fat positive effect. Regarding the profile of fatty acids in fat area, the content of linoleic fatty acid level of 30 % of FBC was 18.2 % higher ( P < 0.05 ) at the level of 0.0 % and the arachidonic level of 22.5 % was higher than 33.3 % and 37.5 % at levels of 0.0 % and 15.0 % ( FBC ) respectively. It is concluded that finishing pigs may be food diets containing up to 30 % of FBC, improving the quality of housing for lower fat deposition and modification in the fatty acid profile.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this study was to evaluate the effects of the use of cashew bagasse bran (CBB) as food ingredient in qualitative feed restriction programs on the carcass traits, meat quality, organs weight and intestinal morphometry of barrows and gilts. Twenty – four crossbred pigs were used (12 barrows and 12 gilts) with an average initial body weight of 57.93 ± 3.67 kg/LW. The experimental designs was in randomized blocks 3x2 factorial arrangement with three level (0%, 15% e 30% CBB), two genders (barrows and gilts) and four repetition. A total of twenty-four instalments. The treatments were composed of basal diet (BD) formulated with corn, soybean meal and commercial base mix for finishing pigs, being containing different levels of CBB. At the end of the trial period the animals were slaughtered for the evaluation of the meat quality, traits carcass, Absolute Weight (AW) and Relative Weight (RW) of the organs and morphometric study of small intestine fragment. The inclusion of (CBB) in the diets did not affect the traits carcass of gilts, but interfered in the traits carcass of the barrow positively, increasing the yield of meat into cold carcass and reducing the thickness of subcutaneous fat, without affecting the fatty acid profile. However, we observed increased weight of organs and partial volume of absortiva mucosa of gilts. In the comparison between sex was observed a greater liver weight (AW) and (RW), and surface density of absortiva mucosa of barrow. The use of CBB was considered as ingredient to be used in programs of qualitative feed restriction for finishing pigs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this study was to evaluate the effects of the use of cashew bagasse bran (CBB) as food ingredient in qualitative feed restriction programs on the carcass traits, meat quality, organs weight and intestinal morphometry of barrows and gilts. Twenty – four crossbred pigs were used (12 barrows and 12 gilts) with an average initial body weight of 57.93 ± 3.67 kg/LW. The experimental designs was in randomized blocks 3x2 factorial arrangement with three level (0%, 15% e 30% CBB), two genders (barrows and gilts) and four repetition. A total of twenty-four instalments. The treatments were composed of basal diet (BD) formulated with corn, soybean meal and commercial base mix for finishing pigs, being containing different levels of CBB. At the end of the trial period the animals were slaughtered for the evaluation of the meat quality, traits carcass, Absolute Weight (AW) and Relative Weight (RW) of the organs and morphometric study of small intestine fragment. The inclusion of (CBB) in the diets did not affect the traits carcass of gilts, but interfered in the traits carcass of the barrow positively, increasing the yield of meat into cold carcass and reducing the thickness of subcutaneous fat, without affecting the fatty acid profile. However, we observed increased weight of organs and partial volume of absortiva mucosa of gilts. In the comparison between sex was observed a greater liver weight (AW) and (RW), and surface density of absortiva mucosa of barrow. The use of CBB was considered as ingredient to be used in programs of qualitative feed restriction for finishing pigs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Brazil many types of bioproducts and agroindustrial waste are generated currently, such as cacashew apple bagasse and coconut husk, for example. The final disposal of these wastes causes serious environmental issues. In this sense, waste lignocellulosic content, as the shell of the coconut is a renewable and abundant raw material in which its use has an increased interest mainly for the 2nd generation ethanol production. The hydrolysis of cellulose to reducing sugars such as glucose and xylose is catalysed by a group of enzymes called cellulases. However, the main bottleneck in the enzymatic hydrolysis of cellulose is the significant deactivation of the enzyme that shows irreversible adsorption mechanism leading to reduction of the cellulose adsorption onto cellulose. Studies have shown that the use of surfactants can modify the surface property of the cellulose therefore minimizing the irreversible binding. The main objective of the present study was to evaluate the influence of chemical and biological surfactants during the hydrolysis of coconut husk which was subjected to two pre-treatment in order to improve the accessibility of the enzymes to the cellulose, removing this way, part of the lignin and hemicellulose present in the structure of the material. The pre-treatments applied to coconut bagasse were: Acid/Alkaline using 0.6M H2SO4 followed by 1M NaOH, and the one with Alkaline Hydrogen Peroxide at a concentration of 7.35% (v/v) and pH 11.5. Both the material no treatment and pretreated were characterized using analysis of diffraction X-ray (XRD), Scanning Electron Microscopy (SEM) and methods established by NREL. The influence of both surfactants, chemical and biological, was used at concentrations below the critical micelle concentration (CMC), and the concentrations equal to the CMC. The application of pre-treatment with coconut residue was efficient for the conversion to glucose, as well as for the production of total reducing sugars, it was possible to observe that the pretreatment fragmented the structure as well as disordered the fibers. Regarding XRD analysis, a significant increase in crystallinity index was observed for pretreated bagasse acid/alkali (51.1%) compared to the no treatment (31.7%), while that for that treated with PHA, the crystallinity index was slightly lower, around 29%. In terms of total reducing sugars it was not possible to observe a significant difference between the hydrolysis carried out without the use of surfactant compared to the addition of Triton and rhamnolipid. However, by observing the conversions achieved during the hydrolysis, it was noted that the best conversion was using the rhamnolipíd for the husk pretreated with acid/alkali, reaching a value of 33%, whereas using Triton the higher conversion was 23.8%. The coconut husk is a residue which can present a high potential to the 2nd generation ethanol production, being the rhamonolipid a very efficient biosurfactant for use as an adjuvant in the enzymatic process in order to act on the material structure reducing its recalcitrance and therefore improving the conditions of access for enzymes to the substrate increasing thus the conversion of cellulose to glucose.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Brazil many types of bioproducts and agroindustrial waste are generated currently, such as cacashew apple bagasse and coconut husk, for example. The final disposal of these wastes causes serious environmental issues. In this sense, waste lignocellulosic content, as the shell of the coconut is a renewable and abundant raw material in which its use has an increased interest mainly for the 2nd generation ethanol production. The hydrolysis of cellulose to reducing sugars such as glucose and xylose is catalysed by a group of enzymes called cellulases. However, the main bottleneck in the enzymatic hydrolysis of cellulose is the significant deactivation of the enzyme that shows irreversible adsorption mechanism leading to reduction of the cellulose adsorption onto cellulose. Studies have shown that the use of surfactants can modify the surface property of the cellulose therefore minimizing the irreversible binding. The main objective of the present study was to evaluate the influence of chemical and biological surfactants during the hydrolysis of coconut husk which was subjected to two pre-treatment in order to improve the accessibility of the enzymes to the cellulose, removing this way, part of the lignin and hemicellulose present in the structure of the material. The pre-treatments applied to coconut bagasse were: Acid/Alkaline using 0.6M H2SO4 followed by 1M NaOH, and the one with Alkaline Hydrogen Peroxide at a concentration of 7.35% (v/v) and pH 11.5. Both the material no treatment and pretreated were characterized using analysis of diffraction X-ray (XRD), Scanning Electron Microscopy (SEM) and methods established by NREL. The influence of both surfactants, chemical and biological, was used at concentrations below the critical micelle concentration (CMC), and the concentrations equal to the CMC. The application of pre-treatment with coconut residue was efficient for the conversion to glucose, as well as for the production of total reducing sugars, it was possible to observe that the pretreatment fragmented the structure as well as disordered the fibers. Regarding XRD analysis, a significant increase in crystallinity index was observed for pretreated bagasse acid/alkali (51.1%) compared to the no treatment (31.7%), while that for that treated with PHA, the crystallinity index was slightly lower, around 29%. In terms of total reducing sugars it was not possible to observe a significant difference between the hydrolysis carried out without the use of surfactant compared to the addition of Triton and rhamnolipid. However, by observing the conversions achieved during the hydrolysis, it was noted that the best conversion was using the rhamnolipíd for the husk pretreated with acid/alkali, reaching a value of 33%, whereas using Triton the higher conversion was 23.8%. The coconut husk is a residue which can present a high potential to the 2nd generation ethanol production, being the rhamonolipid a very efficient biosurfactant for use as an adjuvant in the enzymatic process in order to act on the material structure reducing its recalcitrance and therefore improving the conditions of access for enzymes to the substrate increasing thus the conversion of cellulose to glucose.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OLIVEIRA, E. L. et al. Use of Fibres obtained from the Cashew (Anacardium ocidentale, L) and Guava (Psidium guayava) Fruits for Enrichment of Food Products. Brazilian Archives of Biology and Technology, Curitiba, PR, v. 48, p. 143-150, 2005.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Potiguar basin has large fields of viscous oil where the used method for recovering is based on vapor injection; this operation is carried out by injecting vapor in the oilwell directly, without the protection of a revetment through thermal insulation, what causes its dilation and, consequently, cracks in the cement placed on the annular, and lost of hydraulic insulation; this crack is occasioned by the phenomenon of retrogression of the compressive resistance due to the conversion of the hydrated calcium silicate in phases calcium-rich, caused by the high temperatures in the wells, subjected to thermal recuperation. This work has evaluated the application of composite pastes with addition of residue of biomass of ground sugar-cane bagasse as anti-retrogression mineral admixture for cementation of oil-wells subjected to thermal recuperation. The addition of the mineral residue was carried out considering a relative amount of 10, 20, 30, 40 and 59% in relation to cement mass, trying to improve the microstructure of the paste, still being developed a reference paste only with cement and a paste with addition of 40% of silica flour - renowned material in the oil industry as anti-retrogression additive. Pozzolanic activity of the ash was evaluated through XRD, TG/DTG, as the resistance to compression, and it was also determined the physical and mechanical behavior of the pastes when submitted to cure at low temperatures (22 and 38º C); besides it was evaluated the behavior of the pastes when submitted to two cycles of cure at high temperature (280ºC) and pressure (7 MPa). It was verified that the ash of the sugar-cane biomass presents pozzolanic reaction and has great efficiency in decrease the permeability of the paste by filler effect, as well as that addition of ash in a relative amount of 10, 20 e 30% increases cured compressive resistance at low temperatures. It was also showed that the ash in a relative amount of 40% and 59% has very significant efficiency as anti-retrogression additive, since it prevents the decrease of compressive resistance and forms hydrated calcium silicate type xenotlita and tobermorita which have more resistance and stability in high temperatures

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cementing operation is one of the most important stages in the oil well drilling processes and has main function to form hydraulic seal between the various permeable zones traversed by the well. However, several problems may occur with the cement sheath, either during primary cementing or during the well production period. Cements low resistance can cause fissures in the cement sheath and compromise the mechanical integrity of the annular, resulting in contamination of groundwater and producing zones. Several researches show that biomass ash, in particular, those generated by the sugarcane industry have pozzolanic activity and can be added in the composition of the cementing slurries in diverse applications, providing improvements in mechanical properties, revenue and cement durability. Due to the importance of a low cost additive that increases the mechanical properties in a well cementing operations, this study aimed to potentiate the use of sugarcane bagasse ash as pozzolanic material, evaluate the mechanisms of action of this one on cement pastes properties and apply this material in systems slurries aimed to cementing a well with 800 m depth and geothermal gradient of 1.7 °F/100 ft, as much primary cementing operations as squeeze. To do this, the ash beneficiation methods were realized through the processes of grinding, sifting and reburning (calcination) and then characterization by X-ray fluorescence, XRD, TG / DTG, specific surface area, particle size distribution by laser diffraction and mass specific. Moreover, the ash pozzolanic activity added to the cement at concentrations of 0%, 20% and 40% BWOC was evaluated by pozzolanic activity index with lime and with Portland cement. The evaluation of the pozzolanic activity by XRD, TG / DTG and compressive strength confirmed the ash reactivity and indicated that the addition of 20% in the composition of cement slurries produces improvement 34% in the mechanical properties of the slurry cured. Cement slurries properties evaluated by rheological measurements, fluid loss, free fluid, slurry sedimentation, thickening time and sonic strength (UCA) were satisfactory and showed the viability of using the sugarcane ash in cement slurries composition for well cementing