48 resultados para Antenna multibanda


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The characteristic properties of the fractal geometry have shown to be very useful for the construction of filters, frequency selective surfaces, synchronized circuits and antennas, enabling optimized solutions in many different commercial uses at microwaves frequency band. The fractal geometry is included in the technology of the microwave communication systems due to some interesting properties to the fabrication of compact devices, with higher performance in terms of bandwidth, as well as multiband behavior. This work describes the design, fabrication and measurement procedures for the Koch quasi-fractal monopoles, with 1 and 2 iteration levels, in order to investigate the bandwidth behavior of planar antennas, from the use of quasi-fractal elements printed on their rectangular patches. The electromagnetic effect produced by the variation of the fractal iterations and the miniaturization of the structures is analyzed. Moreover, a parametric study is performed to verify the bandwidth behavior, not only at the return loss but also in terms of SWR. Experimental results were obtained through the accomplishment of measurements with the aid of a vetorial network analyzer and compared to simulations performed using the Ansoft HFSS software. Finally, some proposals for future works are presented

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The microstrip antennas are in constant evidence in current researches due to several advantages that it presents. Fractal geometry coupled with good performance and convenience of the planar structures are an excellent combination for design and analysis of structures with ever smaller features and multi-resonant and broadband. This geometry has been applied in such patch microstrip antennas to reduce its size and highlight its multi-band behavior. Compared with the conventional microstrip antennas, the quasifractal patch antennas have lower frequencies of resonance, enabling the manufacture of more compact antennas. The aim of this work is the design of quasi-fractal patch antennas through the use of Koch and Minkowski fractal curves applied to radiating and nonradiating antenna s edges of conventional rectangular patch fed by microstrip inset-fed line, initially designed for the frequency of 2.45 GHz. The inset-fed technique is investigated for the impedance matching of fractal antennas, which are fed through lines of microstrip. The efficiency of this technique is investigated experimentally and compared with simulations carried out by commercial software Ansoft Designer used for precise analysis of the electromagnetic behavior of antennas by the method of moments and the neural model proposed. In this dissertation a study of literature on theory of microstrip antennas is done, the same study is performed on the fractal geometry, giving more emphasis to its various forms, techniques for generation of fractals and its applicability. This work also presents a study on artificial neural networks, showing the types/architecture of networks used and their characteristics as well as the training algorithms that were used for their implementation. The equations of settings of the parameters for networks used in this study were derived from the gradient method. It will also be carried out research with emphasis on miniaturization of the proposed new structures, showing how an antenna designed with contours fractals is capable of a miniaturized antenna conventional rectangular patch. The study also consists of a modeling through artificial neural networks of the various parameters of the electromagnetic near-fractal antennas. The presented results demonstrate the excellent capacity of modeling techniques for neural microstrip antennas and all algorithms used in this work in achieving the proposed models were implemented in commercial software simulation of Matlab 7. In order to validate the results, several prototypes of antennas were built, measured on a vector network analyzer and simulated in software for comparison

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a theoretical and numerical analysis of the parameters of a rectangular microstrip antenna with metamaterial substrate. The metamaterial (MTM) theory was applied along with Transverse Transmission Line (LTT) method to characterize substrate quantities and obtain the general equations of the electromagnetic fields. A study on metamaterial theory was conducted to obtain the constructive parameters, which were characterized through permittivity and permeability tensors to arrive at a set of electromagnetic equations. Electromagnetic principes are used to obtained parameters such as complex resonance frequency, bandwidth and radiation pattern were then obtained. Different metamaterial and antenna configurations were simulated to miniaturize them physically and increase their bandwidth, the results of which are shown through graphics. The theoretical computational analysis of this work proved to be accurate when compared to other studies, and may be used for other metamaterial devices. Conclusions and suggestions for future work are also proposed

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents a theoretical and numerical analysis of parameters of a rectangular microstrip antenna with bianisotropic substrate, and including simultaneously the superconducting patch. The full-wave Transverse Transmission Line - TTL method, is used to characterize these antennas. The bianisotropic substrate is characterized by the permittivity and permeability tensors, and the TTL gives the general equations of the electromagnetic fields of the antennas. The BCS theory and the two fluids model are applied to superconductors in these antennas with bianisotropic for first time. The inclusion of superconducting patch is made using the complex resistive boundary condition. The resonance complex frequency is then obtained. Are simulated some parameters of antennas in order to reduce the physical size, and increase the its bandwidth. The numerical results are presented through of graphs. The theoretical and computational analysis these works are precise and concise. Conclusions and suggestions for future works are presented

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main objective in this work is the analysis of resonance frequency microstrip structures with glass fiber and electromagnetic band gap (EBG/PBG) substrate and analysis of microstrip antennas with rectangular patch of superconductor of high critical temperature (HTS). In this work was used the superconductors YBCO (critical temperature of 90K), SnBaCaCuOy (critical temperature of 160K), and Sn5InCa2Ba4Cu10Oy (critical temperature of 212K) with results in Gigahertz and Terahertz. Was used microstrip antennas arrays planar and linear phase and linear phase planar with patch with superconductor. It presents a study of the major theories that explain superconductivity. In phase arrays were obtained the factors arrays for such configurations, and the criteria of phase and spacing between the elements compound in the array, which were examined in order to get a main lobe with high directivity and high gain. In the analysis we used the method of Transverse Transmission Line (TTL) used in domain of the Fourier Transform (FTD). The LTT is a full wave method, which obtains the electromagnetic field in terms of the components transverse of the structure. The addition of superconductive patch is made using the boundary condition resistive complex. Results are obtained resonance frequency as a function of the parameters of the antenna, radiation patterns of the E and H Planes, for the phase antenna arrays in linear and planar configurations, for different values of the phase and the spacing between elements

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metamaterials have attracted a great attention in recent years mostly due to their electromagnetic properties not found in nature. Since metamaterials began to be synthesized by the insertion of artificially manufactured inclusions in a medium specified host , it provides the researcher a broad collection of independent parameters such as the electromagnetic properties of the material host. In this work was presents an investigation of the unique properties of Split Ring Resonators and compounds metamaterials was performed. We presents a theoretical and numerical analysis , using the full-wave formalism by applying the Transverse Transmission Line - LTT method for the radiation characteristics of a rectangular microstrip antenna using metamaterial substrate, as is successfully demonstrated the practical use of these structures in antennas. We experimentally confirmed that composite metamaterial can improved the performance of the structures considered in this thesis

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work aims to show how the application of frequency selective surfaces (FSS) in planar antenna arrays become an alternative to obtain desired radiation characteristics from changes in radiation parameters of the arrays, such as bandwidth, gain and directivity. In addition to analyzing these parameters is also made a study of the mutual coupling between the elements of the array. To accomplish this study, were designed a microstrip antenna array with two patch elements, fed by a network feed. Another change made in the array was the use of the truncated ground plane, with the objective of increasing the bandwidth and miniaturize the elements of the array. In order to study the behavior of frequency selective surfaces applied in antenna arrays, three different layouts were proposed. The first layout uses the FSS as a superstrate (above the array). The second layout uses the FSS as reflector element (below the array). The third layout is placed between two FSS. Numerical and experimental results for each of the proposed configurations are presented in order to validate the research

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This master dissertation introduces a study about some aspects that determine the aplication of adaptative arrays in DS-CDMA cellular systems. Some basics concepts and your evolution in the time about celular systems was detailed here, meanly the CDMA tecnique, specialy about spread-codes and funtionaly principies. Since this, the mobile radio enviroment, with your own caracteristcs, and the basics concepts about adaptive arrays, as powerfull spacial filter was aborded. Some adaptative algorithms was introduced too, these are integrants of the signals processing, and are answerable for weights update that influency directly in the radiation pattern of array. This study is based in a numerical analysis of adaptative array system behaviors related to the used antenna and array geometry types. All the simulations was done by Mathematica 4.0 software. The results for weights convergency, square mean error, gain, array pattern and supression capacity based the analisis made here, using RLS (supervisioned) and LSDRMTA (blind) algorithms

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A 2.5D ray-tracing propagation model is proposed to predict radio loss in indoor environment. Specifically, we opted for the Shooting and Bouncing Rays (SBR) method, together with the Geometrieal Theory of Diffrartion (GTD). Besides the line-of-sight propagation (LOS), we consider that the radio waves may experience reflection, refraction, and diffraction (NLOS). In the Shooting and Bouncing Rays (SBR) method, the transmitter antenna launches a bundle of rays that may or may not reach the receiver. Considering the transmitting antenna as a point, the rays will start to launch from this position and can reach the receiver either directly or after reflections, refractions, diffractions, or even after any combination of the previous effects. To model the environment, a database is built to record geometrical characteristics and information on the constituent materials of the scenario. The database works independently of the simulation program, allowing robustness and flexibility to model other seenarios. Each propagation mechanism is treated separately. In line-of-sight propagation, the main contribution to the received signal comes from the direct ray, while reflected, refracted, and diffracted signal dominate when the line-of-sight is blocked. For this case, the transmitted signal reaches the receiver through more than one path, resulting in a multipath fading. The transmitting channel of a mobile system is simulated by moving either the transmitter or the receiver around the environment. The validity of the method is verified through simulations and measurements. The computed path losses are compared with the measured values at 1.8 GHz ftequency. The results were obtained for the main corridor and room classes adjacent to it. A reasonable agreement is observed. The numerical predictions are also compared with published data at 900 MHz and 2.44 GHz frequencies showing good convergence

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ln this work, planar quasi- Y agi antennas are investigated based on the concept of the classic Y agi_Uda antennas. These antennas represent improvements on the topologies of the antennas existing printed because they present characteristics of broad bandwidth, excellent radiation diagrams and simple construction. New configurations are adapted for the driver of the antennas, introducing patches elements into the driver. These new configurations are named Patches Elements Anteonas (PEA). This adaptation is obtained from simulations that are executed usiog the software C8T Microwave 8tudio 5. After doing the optimizations, procedures for construction and measurement ofthe prototypes are executed in order to improve the performance of the antennas in such way that they could be used in wireless communication applications, such as Bluetooth, WLAN' s and Wi-Fi. Next, the quasi- Y agi antennas are studied in order to implement them in arrangements. The arrangements construction is based 00 the best driver configuration of the antenna developed in this work. First, a linear arrangement composed by two elements of quasi¬Yagi antennas is constructed in such way that the radiation characteristics and the mutual coupling effects could be analyzed. After that, a 90° angle arrangement composed by two elements is studied to observe the effect of circular polarization. Experiments are executed in order to evaluate the arrangements performance. The experimental results show that the analysis made in this work is efficient and accurate. The numerical values obtained for the analyzed parameters of each structure developed are compared with the experimental values. 80, it is possible to observe a good concordance between them. Finally, some future works proposals are presented

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work deals with the ana1ysis of microstrip patch antennas printed on tapered dielectric substrates. We investigate the influence ofthe substrate height variations on the properties of configurations such as microstrip patch antennas, microstrip patch antennas with overlay and suspendeô microstrip patch antennas. The dielectric substrates can be isotropic or anisotropic ones. This accurate analysis is based on the full-wave formulation. It is carried out initially for the determination of the impedance matrix, through the use of the spectral¬domain immitance approach. We use a model based on a segmentation of the considered line into uniform microstrip line subsections. Normalized phase constants and characteristic impedances are obtained by means of the Galerkin numerical technique. Then, the cascaded combination of the uniform microstrip subsections are analyzed through an interactive procedure. Numerical results are presented for the input reflection coefficient, voltage standing wave ratio, resonant frequency, and radiation pattems ofthe E_plane and H-plane diagrams. It is found that the variations in the substrate height profile produce a great influence on the bandwidth of microstrip antennas. This procedure gives bandwidth improvements without altering considerably the resonant frequency. Furthermore, the tapered microstrip antenna can be used as a lightweight altemative for bandwidth control and to eXtend the use of microstiip antenna technology to a wider variety of applications. Finally, suggestions for the continuity of this work are presented

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work aims to present how the reconfigurable microstrip antennas and frequency selective surfaces can be used to operate at communication systems that require changing their operation frequency according to system requirements or environmental conditions. The main purpose is to present a reconfigurable circular microstrip antenna using a parasitic ring and a reconfigurable dipole frequency selective surface. Thereupon there are shown fundamental topics like microstrip antennas, PIN diodes and the fundamental theory of reconfigurable antennas and frequency selective surfaces. There are shown the simulations and measurements of the fabricated prototypes and it is done an analysis of some parameters like the bandwidth and radiation pattern, for the antennas, and the transmission characteristics, for the frequency selective surface. Copper strips were used in place of the diodes for proof of the reconfigurability concept

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work is the analysis of a structure of the microstrip antenna designed for application in ultra wide band systems (Ultra Wideband - UWB). This is a prospective analytical study where they tested the changes in the geometry of the antenna, observing their suitability to the proposed objectives. It is known that the UWB antenna must operate in a range of at least 500 MHz, and answer a fractional bandwidth greater than or equal to 25%. It is also desirable that the antenna meets the specifications of track determined by FCC - Federal Communication Commission, which regulates the system in 2002 designating the UWB bandwidth of 7.5 GHz, a range that varies from 3.1 GHz to 10, 6 GHz. by setting the maximum power spectral density of operation in -41.3 dB / MHz, and defining the fractional bandwidth by 20%. The study starts of a structure of geometry in the form of stylized @, which evolves through changes in its form, in simulated commercial software CST MICROWAVE STUDIO, version 5.3.1, and then tested using the ANSOFT HFSS, version 9. These variations, based on observations of publications available from literature referring to the microstrip monopole planar antennas. As a result it is proposed an antenna, called Monopole Antenna Planar Spiral Almost Rectangular for applications in UWB systems - AMQEUWB, which presents simulated and measured results satisfactory, consistent with the objectives of the study. Some proposals for future work are mentioned

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents a theoretical and numerical analysis of structures using frequency selective surfaces applied on patch antennas. The FDTD method is used to determine the time domain reflected fields. Applications of frequency selective surfaces and patch antennas cover a wide area of telecommunications, especially mobile communications, filters and WB antennas. scattering parameters are obteained from Fourier Transformer of transmited and reflected fields in time domain. The PML are used as absorbing boundary condition, allowing the determination of the fields with a small interference of reflections from discretized limit space. Rectangular patches are considered on dielectric layer and fed by microstrip line. Frequency selective surfaces with periodic and quasi-periodic structures are analyzed on both sides of antenna. A literature review of the use of frequency selective surfaces in patch antennas are also performed. Numerical results are also compared with measured results for return loss of analyzed structures. It is also presented suggestions of continuity to this work

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work has as main objective the study of arrays of microstrip antennas with superconductor rectangular patch. The phases and the radiation patterns are analyzed. A study of the main theories is presented that explain the microscopic and macroscopic phenomena of superconductivity. The BCS, London equations and the Two Fluid Model, are theories used in the applications of superconductors, at the microstrip antennas and antennas arrays. Phase Arrangements will be analyzed in linear and planar configurations. The arrangement factors of these configurations are obtained, and the phase criteria and the spacing between the elements, are examined in order to minimize losses in the superconductor, compared with normal conductors. The new rectangular patch antenna, consist of a superconducting material, with the critical temperature of 233 K, whose formula is Tl5Ba4Ca2Cu9Oy, is analyzed by the method of the Transverse nTransmission Line (TTL), developed by H. C. C. Fernandes, applied in the Fourier Transform Domain (FTD). The TTL is a full-wave method, which has committed to obtaining the electromagnetic fields in terms of the transverse components of the structure. The inclusion of superconducting patch is made using the complex resistive boundary condition, using the impedance of the superconductor in the Dyadic Green function, in the structure. Results are obtained from the resonance frequency depending on the parameters of the antenna using superconducting material, radiation patterns in E-Plane and H -Plane, the phased antennas array in linear and planar configurations, for different values of phase angles and different spacing between the elements