100 resultados para Algas marinhas
Resumo:
Red marine algae of the genus Gracilaria synthesize sulfated polysaccharides (PS) bioactive. But many of these PS were not properly assessed, as is the case of PS synthesized by edible seaweed Gracilaria birdiae. Previous studies showed that sulfated galactans this alga has anti-inflammatory effect. In this work, a galactan (GB) of G. birdiae was obtained and evaluated by different tests. GB showed anticoagulant activity in APTT assay. GB showed no toxicity to normal cells (3T3), but inhibited the survival of cells of adenocarcinoma of the cervix (HeLa) and human pancreatic cancer (Panc-1) 80% (1.5 mg / ml). GB was not able to hijack the OH radical or the superoxide radical. However, showed activity electron donor in two different tests and presented iron chelator activity (70% and 1.0 mg / ml) and Copper (70% at 0.5 mg / ml). The presence of a higher GB promotes formation of crystals of calcium oxalate dihydrate small size, which is less aggressive, because GB is able to interact with and stabilize the crystal that form. Furthermore, GB (2.0 mg / mL) was not cytotoxic to human renal cells (HEK-293). The data lead us to propose that GB has a great potential for the treatment of urolithiasis
Resumo:
Since the first description of sulfated polysaccharides from seaweeds, the biological activities of these compounds have been evaluated under different aspects and experimental procedures. Among the broad biological activities presented by seaweed polysaccharides, anticoagulant action appears as a promising function. In this present study we have obtained sulfated polysaccharides from the green seaweed Codium isthmocladium by proteolytic digestion, followed by separation into five fractions (0.3, 0.5, 0.7, 0.9 and 1.2) by sequential acetone precipitation. The chemical analyses have demonstrated that all fractions are composed mainly by sulfated polysaccharides. The anticoagulant activity of these fractions was determined by activated partial thromboplastin time (aPTT) and prothrombin time test (PT) using citrate normal human plasma. None fraction has shown anticoagulant activity by PT test. Furthermore, all of them have shown anticoagulant activity by aPTT test. These results indicated that the molecular targets of these sulfated polysaccharides are mainly in the intrinsic via of the coagulation cascade. Agarose gel electrophoresis in 1,3-diaminopropane acetate buffer, pH 9.0, stained with 0.1% toluidine blue showed the presence of two or three bands in several fractions while the fraction 0.9 showed a single spot. By anion exchange chromatography, the acid polysaccharides from the 0.9 acetone fraction were separated into two new fractions eluted respectively with 2.0 and 3.0 M NaCl. These compounds showed a molecular weight of 6.4 and 7.4 kDa respectively. Chemical analyses and infrared spectroscopy showed that Gal 1 and Gal 2 are sulfated homogalactans and differ one from the other in degree and localization of sulfate groups. aPPT test demonstrated that fractions 2,0 and 3,0M (Gal1 and Gal 2, respectively) have anticoagulant activity. This is the first time that anticoagulant sulfated homogalatans have been isolated from green algae. To prolong the coagulation time to double the baseline value in the aPTT, the required amount of sulfated galactan 1 (6,3mg) was similar to low molecular heparin Clexane®, whereas only 0,7mg of sulfated galactan 2 was needed to obtain the same effect. Sulfated galactan 2 in high doses (250mg) induces platelet aggregation. These results suggest that these galactans from C. isthmocladum have a potential application as an anticoagulant drug
Resumo:
In recent years, sulfated polysaccharides (SP) from marine algae have emerged as an important class of natural biopolymers with potential pharmacology applications. Among these, SP isolated from the cell walls of red algae have been study due to their anticoagulant,antithrombotic and anti-inflammatory activities. In the present study, three sulfated polysaccharides fractions denominated F1.5v, F2.0v and F3.0v were obtained from seaweed G. caudate by proteolysis followed to acetone fractionation. Gel electrophoresis using 0.05 M 1,3-diaminopropane-acetate buffer, pH 9,0, stained with 0.1% toluidine blue, showed the presence of SP in all fractions. The chemical analysis demonstrated that all the fractions are composed mainly of galactose. These compounds were evaluated in anticoagulant, antioxidant and antiproliferative activities. In anticoagulant activity evaluated through aPTT and PT tests, no one fractions presented anticoagulant activity at tested concentrations (0.1 mg/mL; 1.0 mg/mL; 2.0 mg/mL).The antioxidant activities of the three fractions were evaluated by the following in vitro systems: Total antioxidant capacity, superoxide and hydroxyl radical scavenging, ferrous chelating activity and reducing power. The fractions were found to have different levels of antioxidant activity in the systems tested. F1.5v shows the highest activity, especially in the ferrous chelating system, with 70% of ferrous inhibiting at 1.0 mg.mL-1. Finally, all the fractions showed dose-dependent antiproliferative activity against HeLa cells. The fractions F1.5v and F2.0v presented the highest antiproliferative activity at 2.0 mg/mL with 42.7% and 37.0% of inhibition, respectively. Ours results suggests that the sulfated polysaccharides from seaweed G. caudata are promising compounds in antioxidant and/or antitumor therapy
Resumo:
In recent years, sulfated polysaccharides from marine algae have emerged as an important class of natural biopolymers with potential application in human and veterinary health care, while taking advantage of the absence of potential risk of contamination by animal viruses. Among these, fucans isolated from the cell walls of marine brown alga have been study due to their anticoagulant, antithrombotic, anti-inflammatory and antiviral activities. These biological effects of fucans have been found to depend on the degree of sulfation and molecular size of the polysaccharide chains. In the present study, we examined structural features of a fucan extracted from brown alga Dictyota menstrualis and its effect on the leukocyte migration to the peritoneum. The sulfated polysaccharides were extracted from the brown seaweed by proteolytic digestion, followed by sequential acetone precipitation producing 5 fractions. Gel lectrophoresis using 0.05 M 1,3-diaminopropane-acetate buffer, pH 9.0, stained with 0.1% toluidine blue, showed the presence of sulfated polysaccharides in all fractions. The chemical analyses demonstrated that all fractions are composed mainly of fucose, xylose, galactose, uronic acid, and sulfate. Electrophoresis in agarose gel in three different buffers demonstrated that the fraction 2.0v have only one population of fucan. This compound was purify by exclusion molecular. It has shown composition of fucose, xilose, sulfate and uronic acid in molar ration of 1.0: 1.7: 1.1: 0.5 respectively. The effect of this heterofucan on the leukocyte migration was observed 6h after zymozan (mg/g) administration into the peritoneum. The heterofucan showed higher antimigratory activity, it decrease the migration of leukocyte in 83.77% to peritoneum. The results suggest that this fucan is a new antimigratory compound with potential pharmacological appications
Resumo:
Seaweeds sulfated polysaccharides have been described as having various pharmacological activities. However, nothing is known about the influence of salinity on the structure of sulfated polysaccharides from green seaweed and pharmacological activities they perform. Therefore, the main aim of this study was to evaluate the effect of salinity of seawater on yield and composition of polysaccharides-rich fractions from green seaweed Caulerpa cupressoides var. flabellata, collected in two different salinities beaches of the coast of Rio Grande do Norte, and to verify the influence of salinity on their biological activities. We extracted four sulfated polysaccharides-rich fractions from C. cupressoides collected in Camapum beach (denominated CCM F0.3; F0.5; F1.0; F2.0), which the seawater has higher salinity, and Buzios beach (denominated CCB F0.3; F0.5; F1.0; F2.0). Different from that observed for other seaweeds, the proximate composition of C. cupressoides did not change with increased salinity. Moreover, interestingly, the C. cupresoides have high amounts of protein, greater even than other edible seaweeds. There was no significant difference (p>0.05) between the yield of polysaccharide fractions of CCM and its CCB counterparts, which indicates that salinity does not interfere with the yield of polysaccharide fractions. However, there was a significant difference in the sulfate/sugar ratio of F0.3 (p<0.05) and F0.5 (p<0.01) (CCM F0.3 and CCB F0.5 was higher than those determined for their counterparts), while the sulfate/sugar ratio the F1.0 and F2.0 did not change significantly (p>0.05) with salinity. This result suggested that the observed difference in the sulfate/sugar ratio between the fractions from CCM and CCB, is not merely a function of salinity, but probably also is related to the biological function of these biopolymers in seaweed. In addition, the salinity variation between collection sites did not influence algal monosaccharide composition, eletrophoretic mobility or the infrared spectrum of polysaccharides, demonstrating that the salinity does not change the composition of sulfated polysaccharides of C. cupressoides. There were differences in antioxidant and anticoagulant fractions between CCM and CCB. CCB F0.3 (more sulfated) had higher total antioxidant capacity that CCM F0.3, since the chelating ability the CCM F0.5 was more potent than CCB F0.5 (more sulfated). These data indicate that the activities of sulfated polysaccharides from CCM and CCB depend on the spatial patterns of sulfate groups and that it is unlikely to be merely a charge density effect. C. cupressoides polysaccharides also exhibited anticoagulant activity in the intrinsic (aPTT test) and extrinsic pathway (PT test). CCB F1.0 and CCM F1.0 showed different (p<0,001) aPTT activity, although F0.3 and F0.5 showed no difference (p>0,05) between CCM and CCB, corroborating the fact that the sulfate/sugar ratio is not a determining factor for biological activity, but rather for sulfate distribution along the sugar chain. Moreover, F0.3 and F0.5 activity in aPTT test was similar to that of clexane®, anticoagulant drug. In addition, F0.5 showed PT activity. These results suggest that salinity may have created subtle differences in the structure of sulfated polysaccharides, such as the distribution of sulfate groups, which would cause differences in biological activities between the fractions of the CCM and the CCB
Resumo:
Marine algae are one of the major sources of biologic compounds. In extracellular matrix of these organisms there are sulfated polysaccharides that functions as structural components and provides protection against dehydration. The fraction 1.0 (F1.0) rich in sulfated galactans obtained from red seaweed Hypnea musciformis was physicochemical characterized and evaluated for pharmacologic activity through antioxidant activity, cytotoxic action on erythrocytes, anticoagulant, stimulatory action under antithrombotic heparan sulfate synthesis and their effects on cell proliferation and cycle cell progression. The main components of F1.0 were carbohydrates (49.70 ± 0.10%) and sulfate (44.59 ± 0.015%), presenting phenolic compounds (4.79 ± 0.016%) and low protein contamination (0.92 ± 0.001%). Fraction 1.0 showed polidisperse profile and signs in infrared analysis in 1262, 1074 and 930, 900 and 850 attributed to sulfate esters S=O bond, presence of a 3,6- anidrogalactose C-O bond, non-sulfated β-D-galactose and a C-O-SO4 bond in galactose C4, respectively. The fraction rich in sulfated galactans exhibited strong antioxidant action under lipid peroxidation assay with IC50 of 0.003 mg/mL. Besides the inhibition of hemolysis induced by H2O2 in erythrocytes treated with F1.0, this fraction did not promote significant cytotoxity under erythrocytes membranes. F1.0 exhibited low anticoagulant activity causing moderate direct inhibition of enzimatic activity of thrombin. This fraction promoted stimulation around of 4.6 times on this synthesis of heparan sulfate (HS) by rabbit aortic endothelial cells (RAEC) in culture when was compared with non treated cells. The fraction of this algae displayed antiproliferative action under RAEC cells causing incresing on cell number on S fase, blocking the cycle cell progression. Thus F1.0 presented cytostatic and no cytotoxic action under this cell lineage. These results suggest that F1.0 from H. musciformis have antioxidant potential which is a great effect for a compound used as food and in food industry which could be an alternative to food industry to prevent quality decay of lipid containing food due to lipid peroxidation. These polysaccharides prevent the lipid peroxidation once the fraction in study exhibited strong inhibitory action of this process. Furthermore that F1.0 present strong antithrombotic action promoting the stimulation of antithrombotic HS synthesis by endothelial cells, being important for thrombosis preventing, by its inhibitory action under reactive oxygen species (ROS) in some in vitro methods, being involved in promotion of hypercoagulability state.
Resumo:
Sulfated polysaccharides comprise a complex group of macromolecules with a range of several biological activities, including antiviral activity, anticoagulant, antiproliferative, antiherpética, antitumor, anti-inflammatory and antioxidant. These anionic polymers are widely distributed in tissues of vertebrates, invertebrates and algae. Seaweeds are the most abundant sources of sulfated polysaccharides in nature. The green algal sulfated polysaccharides are homo or heteropolysaccharides comprised of galactose, glucose, arabinose and/or glucuronic acid. They are described as anticoagulant, anti-inflammatory, antiviral, anti-angiogenic, antitumor compounds. However, there are few studies about elucidation and evaluation of biological/pharmacological effects of sulfated polysaccharides obtained from green algae, for example, there is only one paper reporting the antinociceptive activity of sulfated polysaccharides of these algae. Therefore this study aimed to obtain sulfated polysaccharides of green seaweed Codium isthmocladum and evaluates them as potential antinociceptive agents. Thus, in this study, the total extract of polysaccharides of green alga C. isthmocladum was obtained by proteolytic digestion, followed by fractionation resulting in five fractions (F0.3, F0.5, F0.7, F0.9 and F1.2) by sequential precipitation with acetone. Using the test of abdominal contractions we observed that the fraction F0.9 was the most potent antinociceptive aompound. F0.9 consists mainly of a sulfated heterogalactana. More specific tests showed that Fo.9 effect is dose and time dependent, reaching a maximum at 90 after administration (10 mg / kg of animal). F0.9 is associated with TRPV1 and TRPA1 receptors and inhibits painful sensation in animals. Furthermore, F0.9 inhibits the migration of lymphocytes induced peritonitis test. On the other hand, stimulates the release of NO and TNF-α. These results suggest that F0.9 has the potential to be used as a source of sulfated galactan antinociceptive and anti-inflammatory
Resumo:
Seaweeds are a major source of biologically active compounds . In the extracellular matrix of these organisms are sulfated polysaccharides that functions as structural components preventing it against dehydration. The fraction 0.9 (FucB) rich in sulfated fucans obtained from brown seaweed Dictyota menstrualis was chemical characterized and evaluated for pharmacological activity by testing anticoagulant activity, stimulatory action on the synthesis of an antithrombotic heparan sulfate, antioxidant activity and its effects in cell proliferation. The main components were FucB carbohydrates (49.80 ± 0.10 %) and sulfate (42.30 ± 0.015 %), with phenolic compounds ( 3.86 ± 0.016 %) and low protein contamination ( 0.58 ± 0.001 % ) . FucB showed polydisperse profile and analysis of signals in the infrared at 1262, 1074 and 930 cm -1 and 840 assigned to S = O bonds sulfate esters , CO bond presence of 3,6- anhydrogalactose , β -D- galactose non- sulfated sulfate and the axial position of fucose C4 , respectively. FucB exhibited moderate anticoagulant activity , the polysaccharides prolonged time (aPTT ) 200 ug ( > 90s ) partial thromboplastin FucB no effect on prothrombin time (PT), which corresponds to the extrinsic pathway of coagulation was observed. This stimulation promoted fraction of about 3.6 times the synthesis of heparan sulfate (HS) by endothelial cells of the rabbit aorta ( RAEC ) in culture compared with cells not treated with FucB . This has also been shown to compete for the binding site with heparin. The rich fraction sulfated fucans exhibited strong antioxidant activity assays on total antioxidant (109.7 and 89.5 % compared with BHT and ascorbic acid standards ) , reducing power ( 71 % compared to ascorbic acid ) and ferric chelation ( 71 , comparing with 5 % ascorbic acid). The fraction of algae showed cytostatic activity on the RAEC cells revealed that the increase of the synthesis of heparan sulfate is not related to proliferation. FucB showed antiproliferative action on cell lines modified as Hela and Hep G2 by MTT assay . These results suggest that FucB Dictyota menstrualis have anticoagulant , antithrombotic , antioxidant potential as well as a possible antitumor action, promoting the stimulation of the synthesis of antithrombotic HS by endothelial cells and is useful in the prevention of thrombosis, also due to its inhibitory action on species reactive oxygen ( ROS ) in some in vitro systems , being involved in promoting a hypercoagulable state
Resumo:
Despite the importance of coral reefs to humanity, these environments have been threatened throughout the world. Several factors contribute to the degradation of these ecosystems. The Maracajaú Reef Complex, in Rio Grande do Norte state is part of the Coral Reefs Environment Preservation Area in northeastern Brazil. This area has been receiving an increasing influx of tourism and the integrity of the local reefs is a matter of concern. In this study, the reef macroalgae communities were studied and compared within two areas distinguished by the presence or absence of tourism activities. Two sample sites were chosen: the first one, where diving activities are intense; and the other, where these practices do not occur. Samples were collected at both sites within a quadrate of 625 cm2 of area randomly thrown 5 times along a 10 meters transect line. Richness, Shannon-Hill diversity and Simpson dominance indices were determined based on biomass data. Similarity between sites was analyzed with Bray-Curtis similarity and distance index. Fifty-eight macroalgae species were observed, including 7 Chlorophyta, 13 Phaeophyta and 38 Rhodophyta. In the non-disturbed site, 49 species were found, while at the disturbed site, there were 42 species. Dictyotaceae and Corallinaceae were the most representative families at the non-disturbed site, and Rhodomelaceae and Dictyotaceae at the disturbed site. The non-disturbed site presented a higher biomass and the greatest richness and diversity indices. In the disturbed site the dominance index was greater and Caulerpa racemosa was the dominant species. The dendogram based on similarity index showed two major clusters, and an isolated element at the center that corresponds to a sample from the disturbed site. In the first cluster, samples from the non-impacted site were predominant and fleshy brown algae were more conspicuous. The second cluster was composed primarily of samples from the impacted site, where C. racemosa and red filamentous and erect calcareous algae associations (turf forming) were observed covering large extensions. These associations are represented by groups of algae adapted to environments where disturbances are frequent. They can grow rapidly on substrate where benthic community was removed and do not allow the establishment of other species. The results of the present study show that tourism activity is an impacting factor that has been causing shifts in macroalgae communities in the Maracajaú Reef Complex
Resumo:
The coast of Rio Grande do Norte has more than 100 species of seaweed, mostly unexplored regarding their pharmacological potential. The sulfated polysaccharides (PS) are by far the more seaweed compounds studied, these present a range of biological properties, such as anticoagulant activity, anti-inflammatory, antitumor and antioxidant properties. In this study, we extract sulfated polysaccharide rich-extracts of eleven algae from the coast of Rio Grande do Norte (Dictyota cervicornis; Dictiopterys delicatula; Dictyota menstruallis; Dictyota mertensis; Sargassum filipendula; Spatoglossum schröederi; Gracilaria caudata; Caulerpa cupresoides; Caulerpa prolifera; Caulerpa sertularioides e Codim isthmocladum), and these were evaluated for the potential anticoagulant, antioxidant and antiproliferative. All polysaccharide extracts showed activity for anticoagulant, antioxidant and/or antiproliferative activity, especially D. delicatula and S. filipendula, which showed the most prominent pharmacological potential, thereby being chosen to have their sulfated polysaccharides extracted. By fractionating method were obtained six fractions rich in sulfated polysaccharides to the algae D. delicatula (DD-0,5V, DD-0, 7V, DD-1,0v, DD-1,3v, DD-1,5v and DD-2,0) and five fractions to the alga S. filipendula (SF-0,5V, SF-0,7V, SF-1,0v, SF-1,5v and SF-2,0v). For the anticoagulant assay only the fractions of D. delicatula showed activity, with emphasis on DD-1, 5v that presented the most prominent activity, with APTT ratio similar to clexane® at 0.1 mg/mL. When evaluated the antioxidant potential, all fractions showed potential in all tests (total antioxidant capacity, hydroxyl and superoxide radicals scavenging, ferrous chelation and reducing power), however, the ability to chelate iron ions appears as the main mechanism antioxidant of sulfated polysaccharides from seaweed. In antiproliferative assay, all heterofucanas showed dose-dependent activity for the inhibition of cell proliferation of HeLa, however, with the exception of SF-0,7V, SF- 1,0v and SF-1,5v, all fractions showed antiproliferative activity against MC3T3, a normal cell line. The heterofucana SF-1,5V had its antiproliferative mechanism of action evaluated. This heterofucan induces apoptosis in HeLa cells by a pathway caspase independent, promoting the release of apoptosis Inducing Factor (AIF) in the cytosol, which in turn induces chromatin condensation and DNA fragmentation into 50Kb fragments. These results are significant in that they provide a mechanistic framework for further exploring the use of SF-1.5v as a novel chemotherapeutics against human cervical cancer.
Resumo:
Seaweeds are organisms known to exhibit a variety of biomolecules with pharmacological properties. The coast of Rio Grande do Norte has over 100 species of seaweeds, most of them not yet explored for their pharmacological potential. Sugars and phenolic compounds are the most studied of these being assigned a range of biological properties, such as anticoagulant , antiinflammatory, antitumor and antioxidant activities. In this work, we obtained methanolic extracts from thirteen seaweeds of the coast of Rio Grande do Norte (Dictyota cervicornis; Dictiopterys delicatula; Dictyota menstruallis; D. mertensis; Sargassum filipendula; Spatoglossum schröederi; Acanthophora specifera; Botryocladia occidentalis; Caulerpa cupresoides; C. racemosa; C. prolifera; C. sertularioides e Codium isthmocladum). They were evaluated as anticoagulant and antioxidant drugs, as well as antiproliferative drugs against the tumor cell line HeLa. None of the methanolic extracts showed anticoagulant activity, but when they were evaluated as antioxidant drugs all of extracts showed antioxidant activity in all tests performed (total antioxidant capacity, sequestration of superoxide and hydroxyl radicals, ferric chelation and reductase activity), especially the algae D. mentrualis, D. cilliolata and C. prolifera, who had the greatest potential to donate electrons.In addition, the ability of iron ions chelation appears as the main antioxidant mechanism of the methanolic extracts of these seaweeds mainly for the extract of the C. racemosa seaweed, which reached almost 100% activity. In the MTT assay, all extracts showed inhibitory activity at different levels againts HeLa cells. Moreover, D. cilliolata (MEDC) and D. menstrualis (MEDM) extracts showed specific activity to this cell line, not inhibiting the viability of 3T3 normal cell line, so they were chosen for detailing the antiproliferative mechanism of action. Using flow cytometry, fluorescence microscopy and in vitro assays we demonstrated that MEDC and MEDM induced apoptosis in HeLa cells by activation of caspases 3 and 9 and yet, MEDC induces cell cycle arrest in S phase. Together, these results showed that the methanolic extracts of brown seaweed D. menstrualis and D. cilliolata may contain agents with potential use in combatting cells from human uterine adenocarcinoma. This study also points to the need for more in-depth research on phytochemical and biological context to enable the purification of biologically active products of these extracts
Resumo:
This work aimed to study the diversity and distribution of marine sea turtles stranded in Potiguar Basin, Rio Grande do Norte, as well as aspects related to feeding behavior associated with human impacts. The study was conducted through the analysis of data from stranded animals, recorded in a daily monitoring in an area bounded on the north by the municipality of Aquiraz, in the state of Ceará, and the east by the municipality of Caicara do Norte, in the state of Rio Grande do Norte. Stranded dead animals were necropsied and for the analysis of the diet of animals, esophagus, stomach and intestines were fixed in 10% formalin and after that, the stomach contents were sorted and stored in 70% alcohol. Representative fragments of these organs were removed for making histological slides, with a view to histological characterization of the digestive tract. 2.046 occurrences of turtles were recorded during the period from 01/01/2010 to 31/12/2012. The Chelonia mydas species showed the highest number of records and it was observed in 66.81 % (N = 1,367) of cases; followed by Eretmochelys imbricata with 4.45 % (N = 91) and by Lepidochelys olivacea with 1.22% (N = 25). The Caretta caretta and Dermochelys coriacea species were, respectively, 0.93 % (N = 19) and 0.05 % (N = 1) records of strandings. In 26.54 % of cases, it was not possible to identify the species. Regarding the spatial distribution, the stretch A was the one that had the highest number of strandings and a larger number of records were registered in the warm months of the year. The dietary analysis showed that C. mydas fed preferentially on algae; C. caretta had a diet with a predominance of the item "coral´s fragments" and E. imbricata species showed preference for an animal origin material. Related to this anthropic interaction, 57.14 % (n = 76) of animals that died at the rehabilitation s base, showed cause of death due to complications from ingesting debris. According to the data presented, the Potiguar Basin presents itself as an area with important diversity and distribution of marine sea turtle as well is characterized as a feeding and nidification area for these species
Resumo:
The reef area of Pirangi beach has been experiencing antropogenic actions, mainly due to tourism activity. In order to evaluate these effects, surveys on seaweeds were conducted at nine stations located over the fringing reef. Benthic community (seaweeds/corals) were identified using the photoquadrat method, with 50 meters random transects located paralleled to the coast. The general categories evaluated in each transect were: rock, sand, seaweeds, corals and mollusks. Data achieved were processed at Coral Point Count with Excel Extensions software. A total of 30 seaweed species, 5 coral species and 1 mollusk species were identified. There was a high dominance of short algae at stations with high tourism pressure, whereas frondose algae usually occurred at places without human interference. Seaweeds with the highest percent cover were composed by Sargassum vulgare (59%), Caulerpa racemosa (47%) and Dictyopteris delicatula (33%). Cluster analyses considering benthic organisms revealed five benthic features: (1) submersed area characterized by a diversified marine flora; (2) area with dominance of Caulerpa racemosa and presence of Millepora alcicornis; (3) area with high cover of Sargassum vulgare; (4) trampling area characterized by bare rocks, short algae and Zoanthus sociatus and (5) area with high coverage of Palythoa caribaeroum. Obtained data suggest that the studied area has been damaged by tourism activities. Furthermore, observed differences in algal communities may be a good indicator of ecosystem health of Pirangi reefs
Resumo:
Despite the importance of coral reefs to humanity, these environments have been threatened throughout the world. Several factors contribute to the degradation of these ecosystems. The Maracajaú Reef Complex, in Rio Grande do Norte state is part of the Coral Reefs Environment Preservation Area in northeastern Brazil. This area has been receiving an increasing influx of tourism and the integrity of the local reefs is a matter of concern. In this study, the reef macroalgae communities were studied and compared within two areas distinguished by the presence or absence of tourism activities. Two sample sites were chosen: the first one, where diving activities are intense; and the other, where these practices do not occur. Samples were collected at both sites within a quadrate of 625 cm2 of area randomly thrown 5 times along a 10 meters transect line. Richness, Shannon-Hill diversity and Simpson dominance indices were determined based on biomass data. Similarity between sites was analyzed with Bray-Curtis similarity and distance index. Fifty-eight macroalgae species were observed, including 7 Chlorophyta, 13 Phaeophyta and 38 Rhodophyta. In the non-disturbed site, 49 species were found, while at the disturbed site, there were 42 species. Dictyotaceae and Corallinaceae were the most representative families at the non-disturbed site, and Rhodomelaceae and Dictyotaceae at the disturbed site. The non-disturbed site presented a higher biomass and the greatest richness and diversity indices. In the disturbed site the dominance index was greater and Caulerpa racemosa was the dominant species. The dendogram based on similarity index showed two major clusters, and an isolated element at the center that corresponds to a sample from the disturbed site. In the first cluster, samples from the non-impacted site were predominant and fleshy brown algae were more conspicuous. The second cluster was composed primarily of samples from the impacted site, where C. racemosa and red filamentous and erect calcareous algae associations (turf forming) were observed covering large extensions. These associations are represented by groups of algae adapted to environments where disturbances are frequent. They can grow rapidly on substrate where benthic community was removed and do not allow the establishment of other species. The results of the present study show that tourism activity is an impacting factor that has been causing shifts in macroalgae communities in the Maracajaú Reef Complex
Resumo:
The coast of Rio Grande do Norte has more than 100 species of seaweed, mostly unexplored regarding their pharmacological potential. The sulfated polysaccharides (PS) are by far the more seaweed compounds studied, these present a range of biological properties, such as anticoagulant activity, anti-inflammatory, antitumor and antioxidant properties. In this study, we extract sulfated polysaccharide rich-extracts of eleven algae from the coast of Rio Grande do Norte (Dictyota cervicornis; Dictiopterys delicatula; Dictyota menstruallis; Dictyota mertensis; Sargassum filipendula; Spatoglossum schröederi; Gracilaria caudata; Caulerpa cupresoides; Caulerpa prolifera; Caulerpa sertularioides e Codim isthmocladum), and these were evaluated for the potential anticoagulant, antioxidant and antiproliferative. All polysaccharide extracts showed activity for anticoagulant, antioxidant and/or antiproliferative activity, especially D. delicatula and S. filipendula, which showed the most prominent pharmacological potential, thereby being chosen to have their sulfated polysaccharides extracted. By fractionating method were obtained six fractions rich in sulfated polysaccharides to the algae D. delicatula (DD-0,5V, DD-0, 7V, DD-1,0v, DD-1,3v, DD-1,5v and DD-2,0) and five fractions to the alga S. filipendula (SF-0,5V, SF-0,7V, SF-1,0v, SF-1,5v and SF-2,0v). For the anticoagulant assay only the fractions of D. delicatula showed activity, with emphasis on DD-1, 5v that presented the most prominent activity, with APTT ratio similar to clexane® at 0.1 mg/mL. When evaluated the antioxidant potential, all fractions showed potential in all tests (total antioxidant capacity, hydroxyl and superoxide radicals scavenging, ferrous chelation and reducing power), however, the ability to chelate iron ions appears as the main mechanism antioxidant of sulfated polysaccharides from seaweed. In antiproliferative assay, all heterofucanas showed dose-dependent activity for the inhibition of cell proliferation of HeLa, however, with the exception of SF-0,7V, SF- 1,0v and SF-1,5v, all fractions showed antiproliferative activity against MC3T3, a normal cell line. The heterofucana SF-1,5V had its antiproliferative mechanism of action evaluated. This heterofucan induces apoptosis in HeLa cells by a pathway caspase independent, promoting the release of apoptosis Inducing Factor (AIF) in the cytosol, which in turn induces chromatin condensation and DNA fragmentation into 50Kb fragments. These results are significant in that they provide a mechanistic framework for further exploring the use of SF-1.5v as a novel chemotherapeutics against human cervical cancer.