27 resultados para Air flow


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although the good performance in organic matter and suspended solids removal, the anaerobic reactors are unable to remove ammonia nitrogen from sewage, which makes indispensable to include a step of post-treatment for removal of ammonia or nitrate as necessary. This paper presents the performance of a new variant technology, where the nitrification unit, preceded by anaerobic units, is a submerged aerated biological filter, without continuous sludge discharge in their daily operation. The oxygenation system is very simple and inexpensive, consisting of perforated hoses and compressors. The anaerobic reactors are a septic tank with two chambers followed (8.82 m³) and two parallel anaerobic filters (36 m³ each) filled with ceramic bricks and conics plastic parts. Both followed aerated filters were filled with cut corrugated conduit. The study evaluated the behavior of the system with constant domestic sewage flow (10 m³/d) and different aeration conditions, are these: stage 01, when applied air flow of 0.01 m³ air/min in both aerated filter; stage 02, remained in the initial air flow rate in the second aerated filter and increased at the first to 0.05 m³ air/min; at last, at last, in stage 03, the air flow rate of first aerated filter was 0.10 m³ air/min and on the second remained at 0.01 m³ air/min. The filter FA1 received load of 0.41 kg COD/m³.d, 0.37 kg COD/m³.d and 0.26 kg COD/m³.d on phases 01, 02 and 03, respectively. The FA2 received loads of 0.25 kg COD/m³.d, 0.18 kg COD/m³.d and 0.14 kg COD/m³.d on phases 01, 02 and 03, respectively. During stage 01, were found the following results: 98% removals of BODtotal and 92% of CODtotal, with effluent presenting 9 mg/L of BODtotal final average and 53 mg/L of CODtotal average; suspended solids removals of 93%, with a mean concentration of 10 mg/L in the final effluent; 47% reduction of ammonia of FA2 to FAN 's, presenting average of 28 mg NNH3/ L of ammonia in the effluent with; the dissolved oxygen levels always remained around 2.0 mg/L. During stage 02, were found removals of 97% and 95% to BODtotal and suspended solids, respectively, with average final concentrations of 8 and 7 mg/L, respectively; was removed 60% of ammonia, whose final concentration was 16.3 mg NNH3/ L, and nitrate was increased to a final average concentration of 16.55 mg N-NO3/L. Finally, the stage 03 provided 6 mg/L of DBOtotal (98% removal) and 23 mg/L of CODtotal (95% removal) of final effluent concentrations average. At this stage was identified the higher ammonia oxidation (86%), with final effluent showing average concentration of 6.1 mg N-NH3/L, reaching a minimum of 1.70 mg N-NH3/L. In some moments, during stage 03, there was a moderate denitrification process in the last aerated filter. The average turbidity in the effluent showed around 1.5 NTU, proving the good biomass physical stability. Therefore, the results demonstrate the submerged biological filters potential, filled with high void ratio material (98%), and aerated with hoses and compressor adoption, in the carbonaceous and nitrogenous matter oxidation, also generating an effluent with low concentration of solids

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The separation oil-water by the use of flotation process is characterized by the involvement between the liquid and gas phases. For the comprehension of this process, it s necessary to analyze the physical and chemical properties command float flotation, defining the nature and forces over the particles. The interface chemistry has an important role on the flotation technology once, by dispersion of a gas phase into a liquid mixture the particles desired get stuck into air bubbles, being conduced to a superficial layer where can be physically separated. Through the study of interface interaction involved in the system used for this work, was possible to apply the results in an mathematical model able to determine the probability of flotation using a different view related to petroleum emulsions such as oil-water. The terms of probability of flotation correlate the collision and addition between particles of oil and air bubbles, that as more collisions, better is the probability of flotation. The additional probability was analyzed by the isotherm of absorption from Freundlich, represents itself the add probability between air bubbles and oil particles. The mathematical scheme for float flotation involved the injected air flow, the size of bubbles and quantity for second, the volume of float cell, viscosity of environment and concentration of demulsifier. The results shown that the float agent developed by castor oil, pos pH variation, salt quantity, temperature, concentration and water-oil quantity, presented efficient extraction of oil from water, up to 95%, using concentrations around 11 ppm of demulsifier. The best results were compared to other commercial products, codified by ―W‖ and ―Z‖, being observed an equivalent demulsifier power between Agflot and commercial product ―W‖ and superior to commercial product ―Z‖

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Drying of fruit pulps in spouted beds of inert particles has been indicated as a viable technique to produce fruit powders. Most of the processes employed to produce dried fruit pulps and juices, such as Foam Mat, encapsulation by co-crystallization and spray drying utilize adjuvant and additives (such as thickeners, coating materials, emulsifiers, acidulants, flavors and dyes), which is not always desirable. The fruit pulp composition exerts an important effect on the fruit powder production using a spouted bed. In the study by Medeiros (2001) it was concluded that lipids, starch and pectin contents play an important role on the process performance, enhancing the powder production; however, the drying of fruit pulps containing high content of reducing sugars (glucose and fructose) is practically unviable. This work has the objective of expanding the studies on drying of fruit pulps in spouted bed with aid of adjuvant (lipids, starch and pectin) aiming to enhance the dryer performance without jeopardizing the sensorial quality of the product. The optimum composition obtained by Medeiros (2001) was the basis for preparing the mixtures of pulps. The mixture formulations included pulps of mango (Mangifera indica), umbu (Spondias tuberosa) and red mombin (Spondia purpurea) with addition of cornstarch, pectin and lipids. Different products were used as lipids source: olive and Brazil nut oils, coconut milk, heavy milk, powder of palm fat and palm olein. First of all, experiments were conducted to define the best formulation of the fruit pulps mixture. This definition was based on the drying performance obtained for each mixture and on the sensorial characteristics of the dry powder. The mixture formulations were submitted to drying at fixed operating conditions of drying and atomizing air flow rate, load of inert particles, temperature and flow rate of the mixture. The best results were obtained with the compositions having powder of palm fat and palm olein in terms of the drying performance and sensorial analysis. Physical and physicochemical characteristics were determined for the dry powders obtained from the mixtures formulations. Solubility and reconstitution time as well as the properties of the product after reconstitution were also evaluated. According to these analyses, the powder from the mixtures formulations presented similar characteristics and compatible quality to those produced in other types of dryers. Considering that the palm olein is produced in Brazil and that it has been used in the food industry substituting the palm fat powder, further studies on drying performance were conducted with the composition that included the palm olein. A complete factorial design of experiments 23, with three repetitions at the central point was conducted to evaluate the effects of the air temperature, feeding flow rate and intermittence time on the responses related to the process performance (powder collection efficiency, material retained in the bed and angle of repose of the inert particles after the process) and to the product quality (mean moisture content, loss of vitamin C and solubility). Powder production was uniform for the majority of the experiments and the higher efficiency with lower retention in the bed (59.2% and 1.8g, respectively) were obtained for the air temperature of 80°C, mixture feed rate of 5ml/min in intervals of 10 min. The statistical analysis of the results showed that the process variables had individual or combined significant influences on the powder collection efficiency, material retention in the bed, powder moisture content and loss of vitamin C. At the experimental ranges of this work, the angle of repose and solubility were not influenced by the operating variables. From the results of the experimental design, statistical models were obtained for the powder moisture content and loss of vitamin C

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Innovative technologies using surfactant materials have applicability in several industrial fields, including petroleum and gas areas. This study seeks to investigate the use of a surfactant derived from coconut oil (SCO saponified coconut oil) in the recovery process of organic compounds that are present in oily effluents from petroleum industry. For this end, experiments were accomplished in a column of small dimension objectifying to verify the influence of the surfactant SCO in the efficiency of oil removal. This way, they were prepared emulsions with amount it fastens of oil (50, 100, 200 and 400 ppm), being determined the great concentrations of surfactant for each one of them. Some rehearsals were still accomplished with produced water of the industry of the petroleum to compare the result with the one of the emulsions. According to the experiments, it was verified that an increase of the surfactant concentration does not implicate in a greater oil removal. The separation process use gaseous bubbles formed when a gas stream pass a liquid column, when low surfactant concentrations are used, it occurs the coalescence of the dispersed oil droplets and their transport to the top of the column, forming a new continuous phase. Such surfactants lead to a gas-liquid interface saturation, depending on the used surfactant concentration, affecting the flotation process and influencing in the removal capacity of the oily dispersed phase. A porous plate filter, with pore size varying from 40 to 250 mm, was placed at the base of the column to allow a hydrodynamic stable operation. During the experimental procedures, the operating volume of phase liquid was held constant and the rate of air flow varied in each experiment. The resulting experimental of the study hydrodynamic demonstrated what the capturing of the oil was influenced by diameter of the bubbles and air flow. With the increase flow of 300 about to 900 cm3.min-1, occurred an increase in the removal of oil phase of 44% about to 66% and the removal kinetic of oil was defined as a reaction of 1° order.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Actually, Brazil is one of the larger fruit producer worldwide, with most of its production being consumed in nature way or either as juice or pulp. It is important to highlig ht in the fruit productive chain there are a lot lose due mainly to climate reasons, as well as storage, transportation, season, market, etc. It is known that in the pulp and fruit processing industy a yield of 50% (in mass) is usually obtained, with the other part discarded as waste. However, since most this waste has a high nutrient content it can be used to generate added - value products. In this case, drying plays an important role as an alternative process in order to improve these wastes generated by the fruit industry. However, despite the advantage of using this technique in order to improve such wastes, issues as a higher power demand as well as the thermal efficiency limitation should be addressed. Therefore, the control of the main variables in t his drying process is quite important in order to obtain operational conditions to produce a final product with the target specification as well as with a lower power cost. M athematical models can be applied to this process as a tool in order to optimize t he best conditions. The main aim of this work was to evaluate the drying behaviour of a guava industrial pulp waste using a batch system with a convective - tray dryer both experimentally and using mathematical modeling. In the experimental study , the dryin g carried out using a group of trays as well as the power consume were assayed as response to the effects of operational conditions (temperature, drying air flow rate and solid mass). Obtained results allowed observing the most significant variables in the process. On the other hand, the phenomenological mathematical model was validated and allowed to follow the moisture profile as well as the temperature in the solid and gas phases in every tray. Simulation results showed the most favorable procedure to o btain the minimum processing time as well as the lower power demand.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With an increasing number of mature fields, heavy oil recovery has performed one of the great challenges of the oil industry. The Brazilian Northeast, for example, has numerous heavy oil reservoirs are explored with the use of thermal methods. Among the types of methods used for heavy oil, there is the method of in-situ combustion, a technique in which heat is produced within the container, unlike the injection of heated fluid when the heat is generated at the surface and transported to the reservoir. In this type of process, it is common to use vertical wells as injectors and producers. However, methods which use horizontal wells like oil producers are increasingly studied because of greater contact area between the formation and combustion front. Thus, the main objective of this work was to study the different configurations of wells (CIS THAITM and CAGD) in the process of in-situ combustion in oil recovery using a semi-synthetic tank with Brazilian Northeast features. The method "toe-to-heel air injection" (THAITM) is a process of enhanced oil recovery, which is the integration of in-situ combustion with technological advances in drilling horizontal wells. This method uses horizontal wells such as oil producers, keeping vertical injection wells for injecting air. The oil drain process by differential gravitational assisted with combustion (CAGD) is an integrated, in this configuration the horizontal injector well is drilled at the top formation with a horizontal production well in the lower section. The simulations were performed in a commercial program of thermal processes, called "STARS" (Steam, Thermal, and Advanced Processes Reservoir Simulator), the company CMG (Computer Modelling Group). An analysis of the air flow injection was performed and it was found that each method had a maximum injection to the base model, a show that through this air injection limit was reduced cumulative production of oil. Analyses of operating parameters were used: injection flow, configuration and completion of wells. In the sensitivity analysis we found that the air injection flow showed greater influence on THAI method, since the CIS method the completion of the wells was the most influential parameter and CAGD configuration wells showed the greatest influence in the recovered fraction. The economic results have shown that the best case obtained in CAGD method because, despite having higher initial cost showed the best financial return compared to the best cases the CIS and THAI.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With an increasing number of mature fields, heavy oil recovery has performed one of the great challenges of the oil industry. The Brazilian Northeast, for example, has numerous heavy oil reservoirs are explored with the use of thermal methods. Among the types of methods used for heavy oil, there is the method of in-situ combustion, a technique in which heat is produced within the container, unlike the injection of heated fluid when the heat is generated at the surface and transported to the reservoir. In this type of process, it is common to use vertical wells as injectors and producers. However, methods which use horizontal wells like oil producers are increasingly studied because of greater contact area between the formation and combustion front. Thus, the main objective of this work was to study the different configurations of wells (CIS THAITM and CAGD) in the process of in-situ combustion in oil recovery using a semi-synthetic tank with Brazilian Northeast features. The method "toe-to-heel air injection" (THAITM) is a process of enhanced oil recovery, which is the integration of in-situ combustion with technological advances in drilling horizontal wells. This method uses horizontal wells such as oil producers, keeping vertical injection wells for injecting air. The oil drain process by differential gravitational assisted with combustion (CAGD) is an integrated, in this configuration the horizontal injector well is drilled at the top formation with a horizontal production well in the lower section. The simulations were performed in a commercial program of thermal processes, called "STARS" (Steam, Thermal, and Advanced Processes Reservoir Simulator), the company CMG (Computer Modelling Group). An analysis of the air flow injection was performed and it was found that each method had a maximum injection to the base model, a show that through this air injection limit was reduced cumulative production of oil. Analyses of operating parameters were used: injection flow, configuration and completion of wells. In the sensitivity analysis we found that the air injection flow showed greater influence on THAI method, since the CIS method the completion of the wells was the most influential parameter and CAGD configuration wells showed the greatest influence in the recovered fraction. The economic results have shown that the best case obtained in CAGD method because, despite having higher initial cost showed the best financial return compared to the best cases the CIS and THAI.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This Masters Degree dissertation seeks to make a comparative study of internal air temperature data, simulated through the thermal computer application DesignBuilder 1.2, and data registered in loco through HOBO® Temp Data Logger, in a Social Housing Prototype (HIS), located at the Central Campus of the Federal University of Rio Grande do Norte UFRN. The prototype was designed and built seeking strategies of thermal comfort recommended for the local climate where the study was carried out, and built with panels of cellular concrete by Construtora DoisA, a collaborator of research project REPESC Rede de Pesquisa em Eficiência Energética de Sistemas Construtivos (Research Network on Energy Efficiency of Construction Systems), an integral part of Habitare program. The methodology employed carefully examined the problem, reviewed the bibliography, analyzing the major aspects related to computer simulations for thermal performance of buildings, such as climate characterization of the region under study and users thermal comfort demands. The DesignBuilder 1.2 computer application was used as a simulation tool, and theoretical alterations were carried out in the prototype, then they were compared with the parameters of thermal comfort adopted, based on the area s current technical literature. Analyses of the comparative studies were performed through graphical outputs for a better understanding of air temperature amplitudes and thermal comfort conditions. The data used for the characterization of external air temperature were obtained from the Test Reference Year (TRY), defined for the study area (Natal-RN). Thus the author also performed comparative studies for TRY data registered in the years 2006, 2007 and 2008, at weather station Davis Precision Station, located at the Instituto Nacional de Pesquisas Espaciais INPE-CRN (National Institute of Space Research), in a neighboring area of UFRN s Central Campus. The conclusions observed from the comparative studies performed among computer simulations, and the local records obtained from the studied prototype, point out that the simulations performed in naturally ventilated buildings is quite a complex task, due to the applications limitations, mainly owed to the complexity of air flow phenomena, the influence of comfort conditions in the surrounding areas and climate records. Lastly, regarding the use of the application DesignBuilder 1.2 in the present study, one may conclude that it is a good tool for computer simulations. However, it needs some adjustments to improve reliability in its use. There is a need for continued research, considering the dedication of users to the prototype, as well as the thermal charges of the equipment, in order to check sensitivity

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The building envelope is the principal mean of interaction between indoors and environment, with direct influence on thermal and energy performance of the building. By intervening in the envelope, with the proposal of specific architectural elements, it is possible to promote the use of passive strategies of conditioning, such as natural ventilation. The cross ventilation is recommended by the NBR 15220-3 as the bioclimatic main strategy for the hot and humid climate of Natal/RN, offering among other benefits, the thermal comfort of occupants. The analysis tools of natural ventilation, on the other hand, cover a variety of techniques, from the simplified calculation methods to computer fluid dynamics, whose limitations are discussed in several papers, but without detailing the problems encountered. In this sense, the present study aims to evaluate the potential of wind catchers, envelope elements used to increase natural ventilation in the building, through CFD simplified simulation. Moreover, it seeks to quantify the limitations encountered during the analysis. For this, the procedure adopted to evaluate the elements implementation and efficiency was the CFD simulation, abbreviation for Computer Fluid Dynamics, with the software DesignBuilder CFD. It was defined a base case, where wind catchers were added with various settings, to compare them with each other and appreciate the differences in flows and air speeds encountered. Initially there has been done sensitivity tests for familiarization with the software and observe simulation patterns, mapping the settings used and simulation time for each case simulated. The results show the limitations encountered during the simulation process, as well as an overview of the efficiency and potential of wind catchers, with the increase of ventilation with the use of catchers, differences in air flow patterns and significant increase in air speeds indoors, besides changes found due to different element geometries. It is considered that the software used can help designers during preliminary analysis in the early stages of design

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Natural air ventilation is the most import passive strategy to provide thermal comfort in hot and humid climates and a significant low energy strategy. However, the natural ventilated building requires more attention with the architectural design than a conventional building with air conditioning systems, and the results are less reliable. Therefore, this thesis focuses on softwares and methods to predict the natural ventilation performance from the point of view of the architect, with limited resource and knowledge of fluid mechanics. A typical prefabricated building was modelled due to its simplified geometry, low cost and occurrence at the local campus. Firstly, the study emphasized the use of computational fluid dynamics (CFD) software, to simulate the air flow outside and inside the building. A series of approaches were developed to make the simulations possible, compromising the results fidelity. Secondly, the results of CFD simulations were used as the input of an energy tool, to simulate the thermal performance under different rates of air renew. Thirdly, the results of temperature were assessed in terms of thermal comfort. Complementary simulations were carried out to detail the analyses. The results show the potentialities of these tools. However the discussions concerning the simplifications of the approaches, the limitations of the tools and the level of knowledge of the average architect are the major contribution of this study

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mesoporous molecular sieves of the MCM-41 and FeMCM-41 type are considered promissory as support for metals used as catalysts in oil-based materials refine processes and as adsorbents for environmental protection proposes. In this work MCM-41 and FeMCM41 were synthesized using rice husk ash - RHA as alternative to the conventional silica source. Hydrothermal synthesis was the method chosen to prepare the materials. Pre-defined synthesis parameters were 100°C for 168 hours, later the precursor was calcinated at 550°C for 2 hours under nitrogen and air flow. The sieves containing different proportions of iron were produced by two routes: introduction of iron salt direct synthesis; and a modification post synthesis consisting in iron salt 1 % and 5% impregnation in the material followed by thermal decomposition. The molecular sieves were characterized by X ray diffraction XRD, Fourier transform infrared spectroscopy FT-IR, X ray fluorescence spectroscopy XFR, scanning electronic microscopy SEM, specific surface area using the BET method, Termogravimetry TG. The kinetic model of Flynn Wall was used with the aim of determining the apparent activation energy of the surfactant remove (CTMABr) in the MCM- 41 porous. The analysis made possible the morphology characterization, identifying the presence of hexagonal structure typical for mesoporous materials, as well as observation of the MCM41 and iron of characteristic bands.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The occurrence of heavy oil reservoirs have increased substantially and, due to the high viscosity characteristic of this type of oil, conventional recovery methods can not be applied. Thermal methods have been studied for the recovery of this type of oil, with a main objective to reduce its viscosity, by increasing the reservoir temperature, favoring the mobility of the oil and allowing an increasing in the productivity rate of the fields. In situ combustion (ISC) is a thermal recovery method in which heat is produced inside the reservoir by the combustion of part of the oil with injected oxygen, contrasting with the injection of fluid that is heated in the surface for subsequent injection, which leads to loss heat during the trajectory to the reservoir. The ISC is a favorable method for recovery of heavy oil, but it is still difficult to be field implemented. This work had as an objective the parametric analysis of ISC process applied to a semi-synthetic reservoir with characteristics of the Brazilian Northeast reservoirs using vertical production and vertical injection wells, as the air flow injection and the wells completions. For the analysis, was used a commercial program for simulation of oil reservoirs using thermal processes, called Steam, Thermal and Advanced Processes Reservoir Simulator (STARS) from Computer Modelling Group (CMG). From the results it was possible to analyze the efficiency of the ISC process in heavy oil reservoirs by increasing the reservoir temperature, providing a large decrease in oil viscosity, increasing its mobility inside the reservoir, as well as the improvement in the quality of this oil and therefore increasing significantly its recovered fraction. Among the analyzed parameters, the flow rate of air injection was the one which had greater influence in ISC, obtaining higher recovery factor the higher is the flow rate of injection, due to the greater amount of oxygen while ensuring the maintenance of the combustion front