234 resultados para Prospecção geofísica
Resumo:
Located on the western edge of the Brazilian northeast, the Parnaíba Basin is an intra cratonic basin with oil production. This study aims at understanding its genesis and evolution, using aeromagnetic and gravity data. We used the spectral analysis of aeromagnetic data to map the depth to the bottom of the magnetic sources in order to assimilate this depth with the depth of the Curie isotherm, and infer the geothermal gradient. Using the spectral analysis technique, we succeeded in mapping the surface of the depth to the bottom of magnetic sources (SBFM), which marks the depth that occur magnetization. In the Parnaíba Basin the SBFM presented depths around -20,5 and -28,5 , which was consistent with an inversion of the same dataset using the technique of Magnetization Vector Inversion (MVI). Furthermore, SBFM topography correlates well with Moho depth, which was estimated from satellite gravimetric data from the GOCE mission (Gravity Field and Steady-State Ocean Circulation Explorer). Assuming that SBFM coincides with the Curie isotherm of magnetite (ICM), defined as the surface at which magnetite ( ) looses its ferromagnetic properties, it was possible to estimate the geothermal gradient. The geothermal gradient in the basin showed values between 19.2 and 26.5 , allowing to estimate the heat flow for the Parnaíba basin after assuming a conductivity of 2.69 . The resulting heat flow values ranged between 51.6 and 71.3 , which is consistent with values found in other works throughout the South American continent. Lithospheric thickness using an empirical relationship, finding values between -65.8 and -89.2 . We propose that thermal structure of Parnaíba basin is influenced by a deep thermal anomaly. This anomaly has heated the lithosphere beneath the basin and has resulted in relatively thin values for the lithospheric thickness and relatively high surface heat flow values. The origin of the anomaly is not clear, but the correlation between Curie depth and Moho topography, suggests that tectonic extension processes could have played a role.
Resumo:
Subsurface stratigraphic analysis of Devonian strata from the Rio do Peixe Basin, newly recognized by palynological studies, has resulted in the identification of two new lithostratigraphic units assembled in the Santa Helena Group. The Pilões Formation, the lower unit, is composed mainly of dark mudstones and medium-tovery fine-grained sandstones, with minor conglomerates and breccias. The Triunfo Formation, the upper unit, comprises whitish grey, kaolinitic, coarse-grained to conglomeratic, cross stratified sandstones and conglomerates, with interbedded mudstones and fine-grained sandstones. These units were characterized using cores, sidewall and cuttings samples, conventional logs and image log, from three wells drilled by PETROBRAS, and 3D seismic data. The Pilões Formation is interpreted as prodeltaic facies, with lesser associated subaqueous talus, debrite and sandy turbidite lobe facies, distal part of fandelta and braided fluviodeltaic facies of Triunfo Formation. The Santa Helena Group corresponds to the Lower Devonian tectono-sequence deposited in a NW-SE-trending graben during a transgressiveregressive cycle. With 343 meters of thickness (isochore) in well 1-PIL-1-PB (Pilões 1), this sequence has a non-conformity at the lower boundary and its upper boundary is an unconformity with the Lower Cretaceous tectono-sequence (Rio do Peixe Group), that represents a hiatus of about 265 million years. Ignimbrites and coignimbrite breccias (Poço da Jurema volcanic breccia), related to an unknown pyroclastic volcanic event, were recognized at the northern margin of the Sousa halfgraben. Evidence from well data suggests that this event is coeval with the Devonian graben filling. The present study indicates a polyhistorical tectono-volcanosedimentary evolution of the basin. This lithostratigraphic update brings new perspectives for geological research in the Rio do Peixe Basin, as well as in other inland basins of the Northeastern of Brazil. The results of the research also contribute to the kwnoledge of the Borborema Province and western Gondwana paleogeography during the Early Devonian.
Resumo:
The understanding of the occurrence and flow of groundwater in the subsurface is of fundamental importance in the exploitation of water, just like knowledge of all associated hydrogeological context. These factors are primarily controlled by geometry of a certain pore system, given the nature of sedimentary aquifers. Thus, the microstructural characterization, as the interconnectivity of the system, it is essential to know the macro properties porosity and permeability of reservoir rock, in which can be done on a statistical characterization by twodimensional analysis. The latter is being held on a computing platform, using image thin sections of reservoir rock, allowing the prediction of the properties effective porosity and hydraulic conductivity. For Barreiras Aquifer to obtain such parameters derived primarily from the interpretation of tests of aquifers, a practice that usually involves a fairly complex logistics in terms of equipment and personnel required in addition to high cost of operation. Thus, the analysis and digital image processing is presented as an alternative tool for the characterization of hydraulic parameters, showing up as a practical and inexpensive method. This methodology is based on a flowchart work involving sampling, preparation of thin sections and their respective images, segmentation and geometric characterization, three-dimensional reconstruction and flow simulation. In this research, computational image analysis of thin sections of rocks has shown that aquifer storage coefficients ranging from 0,035 to 0,12 with an average of 0,076, while its hydrogeological substrate (associated with the top of the carbonate sequence outcropping not region) presents effective porosities of the order of 2%. For the transport regime, it is evidenced that the methodology presents results below of those found in the bibliographic data relating to hydraulic conductivity, mean values of 1,04 x10-6 m/s, with fluctuations between 2,94 x10-6 m/s and 3,61x10-8 m/s, probably due to the larger scale study and the heterogeneity of the medium studied.
Resumo:
Ambient seismic noise has traditionally been considered as an unwanted perturbation in seismic data acquisition that "contaminates" the clean recording of earthquakes. Over the last decade, however, it has been demonstrated that consistent information about the subsurface structure can be extracted from cross-correlation of ambient seismic noise. In this context, the rules are reversed: the ambient seismic noise becomes the desired seismic signal, while earthquakes become the unwanted perturbation that needs to be removed. At periods lower than 30 s, the spectrum of ambient seismic noise is dominated by microseism, which originates from distant atmospheric perturbations over the oceans. The microsseism is the most continuous seismic signal and can be classified as primary – when observed in the range 10-20 s – and secondary – when observed in the range 5-10 s. The Green‘s function of the propagating medium between two receivers (seismic stations) can be reconstructed by cross-correlating seismic noise simultaneously recorded at the receivers. The reconstruction of the Green‘s function is generally proportional to the surface-wave portion of the seismic wavefield, as microsseismic energy travels mostly as surface-waves. In this work, 194 Green‘s functions obtained from stacking of one month of daily cross-correlations of ambient seismic noise recorded in the vertical component of several pairs of broadband seismic stations in Northeast Brazil are presented. The daily cross-correlations were stacked using a timefrequency, phase-weighted scheme that enhances weak coherent signals by reducing incoherent noise. The cross-correlations show that, as expected, the emerged signal is dominated by Rayleigh waves, with dispersion velocities being reliably measured for periods ranging between 5 and 20 s. Both permanent stations from a monitoring seismic network and temporary stations from past passive experiments in the region are considered, resulting in a combined network of 33 stations separated by distances between 60 and 1311 km, approximately. The Rayleigh-wave, dispersion velocity measurements are then used to develop tomographic images of group velocity variation for the Borborema Province of Northeast Brazil. The tomographic maps allow to satisfactorily map buried structural features in the region. At short periods (~5 s) the images reflect shallow crustal structure, clearly delineating intra-continental and marginal sedimentary basins, as well as portions of important shear zones traversing the Borborema Province. At longer periods (10 – 20 s) the images are sensitive to deeper structure in the upper crust, and most of the shallower anomalies fade away. Interestingly, some of them do persist. The deep anomalies do not correlate with either the location of Cenozoic volcanism and uplift - which marked the evolution of the Borborema Province in the Cenozoic - or available maps of surface heat-flow, and the origin of the deep anomalies remains enigmatic.
Resumo:
This paper discusses the correlation of thermal conductivity, density and magnetic susceptibility with composition of major and trace elements of Neoproterozoic igneous bodies from Borborema Province, Northeastern Brazil. These properties were used as potential markers among the studied magmatic suites. For the correlation between petrophysical and geochemical properties it was considered a set of 195 chemical analyzes of granitoid rocks, separated by the degree of acidity in basic, intermediate and acidic. Major (SiO2, Al2O3, Fe2O3, MgO, CaO, Na2O, K2O and TiO2) and some trace elements (Rb, Sr, Ba, Zr, Th and U) that are usually linked to the formation of the most common minerals of igneous rocks were used. The results show that SiO2 has the best positive correlation with the thermal conductivity, while Al2O3, CaO, Fe2O3, MgO and TiO2 exhibit negative correlation for the same property. The correlation with density is opposite to that one for these oxides with the thermal conductivity. The magnetic susceptibility did not correlate with the elements studied. The results for thermal conductivity and density indicate a tendency of SiO2 and oxides with higher affinity with mafic minerals (Al2O3, CaO, Fe2O3, TiO2 and MgO) in controlling these petrophysical parameters. The set of samples was divided into five different magmatic suites based on their lithogeochemical aspects into: i) peralkaline / alkaline; ii) alkaline; iii) calc-alkaline; iv) high potassium calcium alkaline; and v) shoshonitic. Data analysis showed that the thermal conductivity and density presented good results in the individualization of these suites, notably between peralkaline / alkaline, alkaline suites, calc-alkaline and shoshonitic. However, the high-K calc-alkaline suite overlapped with the other. In contrast, the magnetic susceptibility did not show effective results for separating the five chemical suites.
Resumo:
The crustal architecture of the Borborema Province was investigated through migration and stacking of receiver functions (phase-weighted-stack). The stacks were developed from teleseismic
Resumo:
A practical approach to estimate rock thermal conductivities is to use rock models based just on the observed or expected rock mineral content. In this study, we evaluate the performances of the Krischer and Esdorn (KE), Hashin and Shtrikman (HS), classic Maxwell (CM), Maxwell-Wiener (MW), and geometric mean (GM) models in reproducing the measures of thermal conductivity of crystalline rocks.We used 1,105 samples of igneous and metamorphic rocks collected in outcroppings of the Borborema Province, Northeastern Brazil. Both thermal conductivity and petrographic modal analysis (percent volumes of quartz, K-feldspar, plagioclase, and sum of mafic minerals) were done. We divided the rocks into two groups: (a) igneous and ortho-derived (or meta-igneous) rocks and (b) metasedimentary rocks. The group of igneous and ortho-derived rocks (939 samples) covers most the lithologies de_ned in the Streckeisen diagram, with higher concentrations in the fields of granite, granodiorite, and tonalite. In the group of metasedimentary rocks (166 samples), it were sampled representative lithologies, usually of low to medium metamorphic grade. We treat the problem of reproducing the measured values of rock conductivity as an inverse problem where, besides the conductivity measurements, the volume fractions of the constituent minerals are known and the effective conductivities of the constituent minerals and model parameters are unknown. The key idea was to identify the model (and its associated estimates of effective mineral conductivities and parameters) that better reproduces the measures of rock conductivity. We evaluate the model performances by the quantity that is equal to the percentage of number of rock samples which estimated conductivities honor the measured conductivities within the tolerance of 15%. In general, for all models, the performances were quite inferior for the metasedimentary rocks (34% < < 65%) as compared with the igneous and ortho-derived rocks (51% < < 70%). For igneous and ortho-derived rocks, all model performances were very similar ( = 70%), except the GM-model that presented a poor performance (51% < < 65%); the KE and HS-models ( = 70%) were slightly superior than the CM and MW-models ( = 67%). The quartz content is the dominant factor in explaining the rock conductivity for igneous and ortho-derived rocks; in particular, using the MW-model the solution is in practice vi UFRN/CCET– Dissertação de mestrado the series association of the quartz content. On the other hand, for metasedimentary rocks, model performances were different and the performance of the KEmodel ( = 65%) was quite superior than the HS ( = 53%), CM (34% < < 42%), MW ( = 40%), and GM (35% < < 42%). The estimated effective mineral conductivities are stable for perturbations both in the rock conductivity measures and in the quartz volume fraction. The fact that the metasedimentary rocks are richer in platy-minerals explains partially the poor model performances, because both the high thermal anisotropy of biotite (one of the most common platy-mineral) and the difficulty in obtaining polished surfaces for measurement coupling when platyminerals are present. Independently of the rock type, both very low and very high values of rock conductivities are hardly explained by rock models based just on rock mineral content.
Resumo:
In the last decades, analogue modelling has been used in geology to improve the knowledge of how geological structures are nucleated, how they grow and what are the main important points in such processes. The use of this tool in the oil industry, to help seismic interpretations and mainly to search for structural traps contributed to disseminate the use of this tool in the literature. Nowadays, physical modelling has a large field of applications, since landslide to granite emplacement along shear zones. In this work, we deal with physical modelling to study the influence of mechanical stratifications in the nucleation and development of faults and fractures in a context of orthogonal and conjugated oblique basins. To simulate a mechanical stratigraphy we used different materials, with distinct physical proprieties, such as gypsum powder, glass beads, dry clay and quartz sand. Some experiments were run along with a PIV (Particle Image Velocimetry), an instrument that shows the movement of the particles to each deformation moment. Two series of experiments were studied: i) Series MO: We tested the development of normal faults in a context of an orthogonal (to the extension direction) basin. Experiments were run taking into account the change of materials and strata thickness. Some experiments were done with sintectonic sedimentation. We registered differences in the nucleation and growth of faults in layers with different rheological behavior. The gypsum powder layer behaves in a more competent mode, which generates a great number of high angle fractures. These fractures evolve to faults that exhibit a higher dip than when they cross less competent layers, like the one of quartz sand. This competent layer exhibits faulted blocks arranged in a typical domino-style. Cataclastic breccias developed along the faults affecting the competent layers and showed different evolutional history, depending on the deforming stratigraphic sequence; ii) Series MOS2: Normal faults were analyzed in conjugated sub-basins (oblique to the extension direction) developed in a sequence with and without rheological contrast. In experiments with rheological contrast, two important grabens developed along the faulted margins differing from the subbasins with mechanical stratigraphy. Both experiments developed oblique fault systems and, in the area of sub-basins intersection, faults traces became very curved.
Resumo:
The Borborema Province, located in northeastern Brazil, has a basement of Precambrian age and a tectonic framework structured at the Neoproterozoic (740-560 Ma). After separation between South America and Africa during the Mesozoic, a rift system was formed, giving rise to a number of marginal and inland basins in the Province. After continental breakup, episodes of volcanism and uplift characterized the evolution of the Province. Plateau uplift was initially related to magmatic underplating of mafic material at the base of the crust, perhaps related to the generation of young continental plugs (45-7 Ma) along the Macau-Queimadas Alignment (MQA), due to a small-scale convection at the continental edge. The goal of this study is to investigate the causes of intra-plate uplift and its relationship to MQA volcanism, by using broadband seismology and integrating our results with independent geophysical and geological studies in the Borborema Province. The investigation of the deep structure of the Province with broadband seismic data includes receiver functions and surface-wave dispersion tomography. Both the receiver functions and surface-wave dispersion tomography are methods that use teleseismic events and allow to develop estimates of crustal parameters such as crustal thickness, Vp/Vs ratio, and S-velocity structure. The seismograms used for the receiver function work were obtained from 52 stations in Northeast Brazil: 16 broadband stations from the RSISNE network (Rede Sismográfica do Nordeste do Brasil), and 21 short-period and 6 broadband stations from the INCT-ET network (Instituto Nacional de Ciência e Tecnologia – Estudos Tectônicos). These results add signifi- cantly to previous datasets collected at individual stations in the Province, which include station RCBR (GSN - Global Seismic Network), stations CAUB and AGBL (Brazilian Lithosphere Seismic Project IAG/USP), and 6 other broadband stations that were part of the Projeto Milênio - Estudos geofísicos e tectônicos na Província Borborema/CNPq. For the surface-wave vii tomography, seismograms recorde at 22 broadband stations were utilized: 16 broadband stations from the RSISNE network and 6 broadband stations from the Milênio project. The new constraints developed in this work include: (i) estimates of crustal thickness and bulk Vp/Vs ratio for each station using receiver functions; (ii) new measurements of surfassewave group velocity, which were integrated to existing measurementes from a continental-scale tomography for South America, and (iii) S-wave velocity models (1D) at various locations in the Borborema Province, developed through the simultaneous inversion of receiver functions and surface-wave dispersion velocities. The results display S-wave velocity structure down to the base of the crust that are consistent with the presence of a 5-7.5 km thick mafic layer. The mafic layer was observed only in the southern portion of the Plateau and absent in its northern portion. Another important observation is that our models divide the plateau into a region of thin crust (northern Plateau) and a region of thick crust (southern Plateau), confirming results from independent refraction surveys and receiver function analyses. Existing models of plateau uplift, nonetheless, cannot explain all the new observations. It is proposed that during the Brazilian orogeny a layer of preexisting mafic material was delaminated, as a whole or in part, from the original Brasiliano crust. Partial delamination would have happened in the southern portion of the plateau, where independent studies found evidence of a more resistant rheology. During Mesozoic rifting, thinning of the crust around the southern Plateau would have formed the marginal basins and the Sertaneja depression, which would have included the northern part of the Plateau. In the Cenozoic, uplift of the northern Plateau would have occurred, resulting in a northern Plateau without mafic material at the base of the crust and a southern Plateau with partially delaminated mafic layer.
Resumo:
The use of energy from renewable sources is increasingly demanded by society, especially aeolian - whose raw material is wind. Investments in wind power have become significant in Brazil with emphasis on the Northeast and in particular the Rio Grande do Norte state. According to the Empresa de Pesquisa Energética (Energy Research Company) (2012 ) , investments in the state grew significantly since 2002 with a total accumulated power, by 2013, of approximately 3,400 MW . Even with the early experiences of exploitation of wind energy in 2002, it is still considered new and requires further study referring to the likely changes in the environment and society. In this case, it is of growing and urgent importance to deeply study the wind still in the survey phase of the project, ie , at the beginning of decision making on the most feasible to implement these parks site. Given the above, the question is: from a technical and environmental analysis, how to identify viable areas to install Aeolian parks, taking into account the factors of the environmental dynamics that are relevant to minimize the negative results to the environment and the society? Thus, this study conducted a study on technical and environmental feasibility, proposing a methodology of exploration of feasible wind farms in coastal areas. The study area was a fragment of the northern coast of Rio Grande do Norte and its natural landscape units were identified through the environmental characterization of the area, as well as it was elaborated the map of the land cover, restriction homes and urban areas and Permanent Preservation Areas - PPAs. The environmental fragility was subdivided in the fragility of the natural dynamic, mapped through relief, soils and geology of natural units, and the fragility of the ecosystem, originated by the land cover map. In addition to these maps, it was generated the wind resource for an area from a height of 50 and 100 meters. The intersection between the fragility maps, PPAs and Restriction of homes superimposed on maps of wind potential, provided the map of feasibility of Aeolian parks, resulting in the most favorable areas for its facilities in a technical and environmental point of view. From this study, the entrepreneur can evaluate whether or not to proceed with the studies in this area and especially decrease potential conflicts with society.
Resumo:
The fracturing in carbonate rocks has been attracting increasingly attention due to new oil discoveries in carbonate reservoirs. This study investigates how the fractures (faults and joints) behave when subjected to different stress fields and how their behavior may be associated with the generation of karst and consequently to increased secondary porosity in these rocks. In this study I used satellite imagery and unmanned aerial vehicle UAV images and field data to identify and map faults and joints in a carbonate outcrop, which I consider a good analogue of carbonate reservoir. The outcrop comprises rocks of the Jandaíra Formation, Potiguar Basin. Field data were modeled using the TECTOS software, which uses finite element analysis for 2D fracture modeling. I identified three sets of fractures were identified: NS, EW and NW-SE. They correspond to faults that reactivate joint sets. The Ratio of Failure by Stress (RFS) represents stress concentration and how close the rock is to failure and reach the Mohr-Coulomb envelopment. The results indicate that the tectonic stresses are concentrated in preferred structural zones, which are ideal places for carbonate dissolution. Dissolution was observed along sedimentary bedding and fractures throughout the outcrop. However, I observed that the highest values of RFS occur in fracture intersections and terminations. These are site of karst concentration. I finally suggest that there is a relationship between stress concentration and location of karst dissolution in carbonate rocks.
Resumo:
The fracturing in carbonate rocks has been attracting increasingly attention due to new oil discoveries in carbonate reservoirs. This study investigates how the fractures (faults and joints) behave when subjected to different stress fields and how their behavior may be associated with the generation of karst and consequently to increased secondary porosity in these rocks. In this study I used satellite imagery and unmanned aerial vehicle UAV images and field data to identify and map faults and joints in a carbonate outcrop, which I consider a good analogue of carbonate reservoir. The outcrop comprises rocks of the Jandaíra Formation, Potiguar Basin. Field data were modeled using the TECTOS software, which uses finite element analysis for 2D fracture modeling. I identified three sets of fractures were identified: NS, EW and NW-SE. They correspond to faults that reactivate joint sets. The Ratio of Failure by Stress (RFS) represents stress concentration and how close the rock is to failure and reach the Mohr-Coulomb envelopment. The results indicate that the tectonic stresses are concentrated in preferred structural zones, which are ideal places for carbonate dissolution. Dissolution was observed along sedimentary bedding and fractures throughout the outcrop. However, I observed that the highest values of RFS occur in fracture intersections and terminations. These are site of karst concentration. I finally suggest that there is a relationship between stress concentration and location of karst dissolution in carbonate rocks.
Resumo:
The key aspect limiting resolution in crosswell traveltime tomography is illumination, a well known result but not as well exemplified. Resolution in the 2D case is revisited using a simple geometric approach based on the angular aperture distribution and the Radon Transform properties. Analitically it is shown that if an interface has dips contained in the angular aperture limits in all points, it is correctly imaged in the tomogram. By inversion of synthetic data this result is confirmed and it is also evidenced that isolated artifacts might be present when the dip is near the illumination limit. In the inverse sense, however, if an interface is interpretable from a tomogram, even an aproximately horizontal interface, there is no guarantee that it corresponds to a true interface. Similarly, if a body is present in the interwell region it is diffusely imaged in the tomogram, but its interfaces - particularly vertical edges - can not be resolved and additional artifacts might be present. Again, in the inverse sense, there is no guarantee that an isolated anomaly corresponds to a true anomalous body because this anomaly can also be an artifact. Jointly, these results state the dilemma of ill-posed inverse problems: absence of guarantee of correspondence to the true distribution. The limitations due to illumination may not be solved by the use of mathematical constraints. It is shown that crosswell tomograms derived by the use of sparsity constraints, using both Discrete Cosine Transform and Daubechies bases, basically reproduces the same features seen in tomograms obtained with the classic smoothness constraint. Interpretation must be done always taking in consideration the a priori information and the particular limitations due to illumination. An example of interpreting a real data survey in this context is also presented.
Resumo:
The key aspect limiting resolution in crosswell traveltime tomography is illumination, a well known result but not as well exemplified. Resolution in the 2D case is revisited using a simple geometric approach based on the angular aperture distribution and the Radon Transform properties. Analitically it is shown that if an interface has dips contained in the angular aperture limits in all points, it is correctly imaged in the tomogram. By inversion of synthetic data this result is confirmed and it is also evidenced that isolated artifacts might be present when the dip is near the illumination limit. In the inverse sense, however, if an interface is interpretable from a tomogram, even an aproximately horizontal interface, there is no guarantee that it corresponds to a true interface. Similarly, if a body is present in the interwell region it is diffusely imaged in the tomogram, but its interfaces - particularly vertical edges - can not be resolved and additional artifacts might be present. Again, in the inverse sense, there is no guarantee that an isolated anomaly corresponds to a true anomalous body because this anomaly can also be an artifact. Jointly, these results state the dilemma of ill-posed inverse problems: absence of guarantee of correspondence to the true distribution. The limitations due to illumination may not be solved by the use of mathematical constraints. It is shown that crosswell tomograms derived by the use of sparsity constraints, using both Discrete Cosine Transform and Daubechies bases, basically reproduces the same features seen in tomograms obtained with the classic smoothness constraint. Interpretation must be done always taking in consideration the a priori information and the particular limitations due to illumination. An example of interpreting a real data survey in this context is also presented.
Resumo:
The discussion about rift evolution in the Brazilian Equatorial margin during the South America-Africa breakup in the Jurassic/Cretaceous has been focused in many researches. But rift evolution based on development and growth of faults has not been well explored. In this sense, we investigated the Cretaceous Potiguar Basin in the Equatorial margin of Brazil to understand the geometry of major faults and the influence of crustal heterogeneity and preexisting structural fabric in the evolution of the basin internal architecture. Previous studies pointed out that the rift is an asymmetrical half-graben elongated along the NE-SW direction. We used 2D seismic, well logs and 3D gravity modeling to analyze four major border fault segments and determine their maximum displacement (Dmax) and length (L) ratio in the Potiguar Rift. We constrained the 3D gravity modeling with well data and the interpretation of seismic sections. The difference of the fault displacement measured in the gravity model is in the order of 10% compared to seismic and well data. The fault-growth curves allowed us to divide the faulted rift border into four main fault segments, which provide roughly similar Dmax/L ratios. Fault-growth curves suggest that a regional uniform tectonic mechanism influenced growth of the rift fault segments. The variation of the displacements along the fault segments indicates that the fault segments were formed independently during rift initiation and were linked by hard and soft linkages. The latter formed relay ramps. In the interconnection zones the Dmax/L ratios are highest due to interference of fault segment motions. We divided the evolution of the Potiguar Rift into five stages based on these ratios and correlated them with the major tectonic stages of the breakup between South America and Africa in Early Cretaceous.