769 resultados para CNPQ::CIENCIAS EXATAS E DA TERRA::GEOCIENCIAS::GEOFISICA::SENSORIAMENTO REMOTO
Resumo:
This work focuses the geological and geomorphological characterization of the inner shelf in the West Coast of the Rio Grande do Norte state, particularly the reef coral barrier offshore of Maracajaú (Maxaranguape district). If developed without the necessary concerns, tourism and entertainment activities that have been widely increased during the last five years can lead to irreversible environmental damages to the biotic and abiotic ecosystems of the region. Regarding these aspects, it is crucial the realization of a detailed study to envisage the achievement of a self-sustainable development, especially with respect to the possibilities of a rational usage of the region. This is the aim of this manuscript, which consisted of an initial stage of digital modeling of the terrain with basis on digitalization and vectorization of the Nautical map number 803 (Naval Service of Brazil, 1971). Information obtained in this phase was improved with the digital processing of small format aerial photos acquired from six flights, which were integrated to form a photomosaic of the area. The refined maps produced with the data from Nautical and aerial photo-interpretations aided to locate 9 bathymetric profiles, which provided information about the sea floor relief of the whole area. This later aided in the choosing of areas to bottom sampling that, in its turn, helped to characterize sediments present in floor of the inner shelf. Sixty-four samples collected during this work were studied by granulometrical and chemical analysis; with the later one developed in order to measure carbonate and organic matter contents. Forty-two of these samples showed carbonate content higher than 80% and organic matter in the range of 0.58% to 24.06%. With respect to grain size, these samples are in the interval between fine- to mid-grained sands. Sands with grain sizes higher than this one are also composed by carbonate carapaces such as pale yellow to red rhodolites with ellipsoidal and spheroidal shapes. During determination of the submerse features, the small format aerial photos demonstrated to be a useful methodology to aid the delineation of the sea floor topography through shallow deep waters. The bathymetry, for its turn, revealed several features at the bottom of the platform, in which the most conspicuous are undulations and morphological details of the São Roque Channel. Examination of bottom, aside from sand, yielded the identification of bivalves, ostracods, fragments of bryozoans, spikes of sponges, spines of echinoderms, operculum of gastropods and foraminifers. From the above it is concluded that the multi-methodological approach developed in this study worked efficiently, permitting the geomorphological and environmental characterization of the inner shelf of the North Maracajaú
Resumo:
The study area is located at the eastern-central portion of the Seridó Belt, on the interface between the Seridó Group Metasediments and the crystalline basement rocks of the Caicó Complex (RN). Petrographic and geochemical data allow us to define aspects related to the genesis and evolution of the Serra Verde Pluton magmas, which composes the goal of this dissertation The Serra Verde Pluton is a stock with outcropping area of about 25 km², which is intrusive into metasedimentary sequence and the basement gneisses. The pluton intrusion is sintectonic to the Brasiliano event, elongated along the NE direction, developing a cornue geometry. The rock is a monzogranite mainly composed by K-feldspar, plagioclase and quartz, which usually compose more than 85% of the modal analisys. The main mafic mineral is the biotite, while amphibole, sphene, epidote, opaque minerals, allanite, zircon and apatite occur as accessory minerals. It features still a latemagmatic paragenesis composed by chlorite, granular epidote, carbonates and muscovite, developed through the percolation of late CO2 and H2O rich fluids. Chemically, the Serra Verde Pluton rocks may be classified as metaluminous, of calc-alkaline affiliation, sometimes showing trondhjemític characteristics, with high Na2O (>4,5%), Sr (>400ppm) and Ba (>800ppm) and low K2O (≤3,0%), MgO (<1,0%), TiO2 (<0,5%), Rb (<90ppm), Y (≤16ppm) and Zr (≤13ppm). Micropetrographic evidences (mineral assembly and microtextures) indicate that the magma evolution occurred in moderated to high fO2 conditions, above the FMQ buffer. Thermo-barometric data obtained by minor elements geochemistry and the CIPW data, suggest a final/minimal pressure crystallization for the Serra Verde Pluton samples of about 3 to 5 kbar, liquidus temperature around 800o C, solidus temperature between 680o and 660o C. This data is compatible with those observed by many authors for the Neoproterozoic granites of the Seridó Belt. The group of analyzed data (Petrographic, microtextural and geochemical), suggests that the dominant process of the generation and evolution of the Serra Verde Granite magma was the fractional crystallization, probably from basement quartz-dioritic and tonalitic orthogneisses source
Resumo:
This study describes brittle deformation and seismicity in the Castanhão Dam region, Ceará State, Brazil. This reservoir will include a hidroeletric power plant and will store about 6,7 billions m3 of water. Five main litostratigraphic unit were identified in the region: gneissic-migmatitic basement, metavolcanosedimentary sequence, granitoid plutons of Brasiliano age, Mesozoic basaltic dike swarm, and Cenozoic fluvial terraces of the Jaguaribe river. The region has experienced several faulting events that occurred at different crustal levels. Faults formed at depths less than about 12 km present left-lateral movement and are associated with epidote and quartz infillings. Faults formed at depths less than 7 km are mainly strike-slip present cataclastic rocks, fault breccia and gouge. Both fault groups form mainly NE-trendind lineaments and represent reactivation of ductile shear zones or new formed faults that cut across existing structures. Seismically-induced liquefaction fractures take place in Cenozoic terraces and indicate paleoearthquakes that may have reached at leat 6,8 MS. In short, this work indicate that the level of paleoseismicity is much greater than one observed in the instrumental record. Several faults are favourably oriented for reactivation and induced seismicity should be expected after the Castanhão Dam impoudment
Resumo:
The study area is located in the NW portion of the Ceará state nearby the city of Santana do Acaraú. Geologically it lies along the Sobral-Pedro II lineament which limits the domains of Ceará Central and Noroeste do Ceará, both belonging to the Borborema Province.The object of study was a NE trending 30km long siliciclastic body (sandstone and conglomerate) bounded by transcurrent dextral faults. The sediments are correlated to the Ipú Formation (Serra Grande Group) from the Parnaiba basin, which age is thought to be Siluro-Devonian. Existing structural data shown that bedding has higher but variable dips (70-45) near the borders faults and much lower to subhorizontal inward the body. The brittle deformation was related to a reactivation, in lower crustal level, of the Sobral-Pedro II lineament (Destro (1987, 1999; Galvão, 2002).The study presented here was focused in applying geophysicals methods (gravimetry and seismic) to determine the geometry of the sandstone/conglomeratic body and together with the structural data, to propose a model to explain its deformation. The residual anomalies maps indicate the presence of two main graben-like structures. The sedimentary pile width was estimated from 2D gravimetric models to be about 500-600 meters. The 3D gravimetric model stressed the two maximum width regions where a good correlation is observed between the isopach geometry and the centripetal strike/dip pattern displayed by the sediments bedding. Two main directions (N-S and E-W) of block moving are interpreted from the distribution pattern of the maximum width regions of the sedimentary rock
Resumo:
The current work was developed on the dune systems of the Parque das Dunas and Barreira do Inferno. These places are located in the cities of Natal and Parnamirim (RN, Brazil), respectively. This project has the purpose of developing the deterministic model on a specific blowout at Parque das Dunas, based in the geophysical interpretations of the lines gotten with the Ground Penetration Radar and the planialtimetric acquisitions of the topographical surface of the land. Also analyses of the vulnerability/susceptibility of these dune systems had been done in relation to the human pressures. To develop its deterministic model, it is necessary to acquire inner and outer geometries of the cited blowout. In order to depict inner geometries underneath the surface are used the GPR observing the altimetric control for topographical correction of the GPR lines. As for the outer geometries, the geodesic GPS gives us the planialtimetric points (x, y and z points) with milimetric precision, resulting in high-resolution surfaces. Using interpolation methods of the planialtimetric points was possible create Digital Elevations Models (DEM´s) of these surfaces. As a result, 1,161.4 meters of GPR lines were acquired on the blowout at the Parque das Dunas and 3,735.27 meters on the blowout at the Barreira do Inferno. These lines had been acquired with a 200 MHz antenna, except the 7 and 8 lines, for which we had been used a 100 MHz antenna. The gotten data had been processed and interpreted, being possible to identify boundary surfaces of first, second and third order. The first order boundary surface is related with the contact of the rocks of the Barreiras Group with the aeolian deposits. These deposits had been divided in two groups (Group 1 and Group 2) which are related with the geometry of stratum and the dip of its stratifications. Group 1 presented stratum of sigmoidal and irregular geometries and involved bodies where the reflectors had presented dips that had varied of 20 to the 28 degrees for the Parque das Dunas blowout and of 22 to the 29 degrees for the Barreira do Inferno blowout. Usually, it was limited in the base for the first order surface and in the top for the second order surface. Group 2 presented stratum of trough, wedge or lens geometries, limited in the base for the second order vi surface, where the corresponding deposits had more shown smoothed reflectors or with dips of low angle. The Deterministic and Digital Elevation Models had been developed from the integration and interpretation of the 2D data with the GOCAD® program. In Digital Elevations Models it was possible to see, for the localities, corridor or trough-shaped blowouts. In Deterministic Model it was possible to see first and second order boundary surfaces. For the vulnerability/susceptibility of the dune systems it was applied the methodology proposal by Boderè al (1991); however the same one did not show adequate because it evaluates actual coastal dunes. Actual coastal dunes are dunes that are presented in balance with the current environmental conditions. Therefore, a new methodology was proposal which characterizes the supplying and activity sedimentary, as well as the human pressures. For the methodology developed in this work, both the localities had presented a good management. The Parque das Dunas was characterized as a relic dune system and the Barreira do Inferno was characterized as a palimpsestic dune system. Also two Thematic Maps had been elaborated for the environmental characterization of the studied dune systems, with software ArcGis 8.3, and its respective data bases
Resumo:
Orbital remote sensing has been used as a beneficial tool in improving the knowledge on oceanographic and hydrodynamic aspects in northern portion of the continental shelf of Rio Grande do Norte, offshore Potiguar Basin. Aspects such as geography, temporal and spatial resolution combined with a consistent methodology and provide a substantial economic advantage compared to traditional methods of in situ data collecting. Images of the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard NASA's AQUA satellite were obtained to support systematic data collections related to the campaign of environmental monitoring and characterization of Potiguar Basin, held in May 2004. Images of Total Suspension Matter (TSM) and values of radiance standard were generated for the calculation of concentrations of total suspension matter (TSM), chlorophyll-a and sea surface temperature (SST). These data sets were used for statistical comparisons between measures in situ and satellite estimates looking validate algorithms or develop a comprehensive regional approach empirically. AQUA-MODIS images allowed the simultaneous comparison of two-dimensional water quality (total suspension matter), phytoplankton biomass (chlorophyll-a) variability and physical (temperature). For images of total suspension matter, the generated models showed a good correlation with the field data, allowing quantitative and qualitative analysis. The images of chlorophyll-a showed a consistent correlation with the in situ values of concentration. The algorithms adjusted for these images obtained a correlation coefficient fairly well with the data field in order that the sensor can be having an effect throughout the water column and not just the surface. This has led to a fit between the data of chlorophyll-the integration of the average sampling interval of the entire water column up to the level of the first optical depth, with the data generated from the images. This method resulted in higher values of chlorophyll concentration to greater depths, due to the fact that we are integrating more values of chlorophyll in the water column. Thus we can represent the biomass available in the water column. Images SST and SST measures in situ showed a mean difference DT (SST insitu - SST sat) around -0.14 ° C, considered low, making the results very good. The integration of total suspension matter, chlorophyll-a, the temperature of the sea surface (SST) and auxiliary data enabled the recognition of some of the main ways to fund the continental shelf. The main features highlighted were submerged canyons of rivers Apodi and Açu, some of the lines and beachrocks reefs, structural highs and the continental shelf break which occurs at depths around -60 m. The results confirmed the high potential for use of the AQUA-MODIS images to environmental monitoring of sea areas due to ease of detection of the field two-dimensional material in suspension on the sea surface, temperature and the concentration of chlorophyll-a
Resumo:
A complex depositional history, related to Atlantic rifting, demonstrates the geological evolution during the late Jurassic and early Neocomian periods in the Araripe Basin NE Brazil. Based on outcrop, seismic and remote sensing data, a new model of the tectono-stratigraphic evolution of the section that covers the stages Dom João, Rio da Serra and Aratu (Brejo Santo, Missão Velha and Abaiara formations) is presented in this paper. In the stratigraphic section studied, ten sedimentary facies genetically linked to nine architectural elements were described, representing depositional systems associated with fluvial, aeolian and deltaic environments. Based on the relationship between the rates of creation of accommodation space and sediment influx (A / S) it was possible to associate these depositional systems with High and Low accommodation system tracks. These system tracks represent two tectono-sequences, separated by regional unconformities. The Tectono-sequence I, which includes lithotypes from the Brejo Santo Formation and is related to the pre-rift stage, is bounded at the base by the Paleozoic unconformity. This unit represents only a High Accommodation System Track, composed by a succession of pelitic levels interbedded with sandstones and limestones, from a large fluvial floodplain origin, developed under arid climatic conditions. The Tectono-sequence II, separated from the underlying unit by an erosional unconformity, is related to the rift stage, and is composed by the Missão Velha and Abaiara Formation lithotypes. Changes in depositional style that reflect variations in the A / S ratio, and the presence of hydroplastic deformation bands, make it possible to divide this tectonosequence into two internal sequences. Sequence IIA, which includes the lower portion of the Missão Velha Formation and sequence IIB, is composed by the upper section of the Missão Velha and Abaiara Formations The Sequence IIA below, composed only by the Low Accommodation System Track, includes crossbedding sandstones interbedded with massive mudstones, which are interpreted as deposits of sandy gravel beds wandering rivers. Sequence IIB, above, is more complex, showing a basal Low Accommodation System Track and a High Accommodation System Track at the top, separated by an expansion surface. The lower System Track, related to the upper portion of the Missão Velha Formation, is composed by a series of amalgamated channels, separated by erosion surfaces, interpreted as deposits of a belt of braided channels. The High Accommodation System Track, correlated with the Abaiara Unit, is marked by a significant increase in the A / S, resulting in the progradation of a system of braided river deltas with aeolic influence. Regarding tectonic evolution, the stratigraphic study indicates that the Tectonosequence Rift in the Araripe basin was developed in two phases: first characterized by a beginning of rifting, related to Sequence IIA, followed by a phase of syndepositional deformation, represented by sequence IIB. The first phase was not influenced by the development of large faults, but was influenced by a sharp and continuous decrease of accommodation space that permitted a change in depositional patterns, establishing a new depositional architecture. In turn, the stage of syndepositional deformation allowed for the generation of enough accommodation space for the preservation of fluvial-lacustrine deposits and conditioned the progradation of a braided river-dominated delta system.
Resumo:
The Amapá State has an important natural lake system, known as The Amapá Lakes Region . Most of these lakes are on the southern part of Amapá s coastal plain, which has 300 km of extension and it s composed by holocenic sediments deposited at the northern part of Amazon River to the Orange Cape located on the northern part of Amapá state. This region is under influence of the Amazon River discharge which is the largest liquid discharge of about 209.000 m³/s and biggest sediment budget discharged on the ocean in the order 6.108 ton per day. The climate is influenced by the Intertropical Convergence Zone and El Niño Southern Oscillation which act mainly under precipitation, nebulosity, local rivers and tidal hidrology. In this region lake belts are Ocidental, Oriental and Meridional Lake Belts. The last one is formed by the by the lakes Comprido de Cima, Botos, Bacia, Lodão, Ventos, Mutuco and Comprido de Baixo. These lakes are the closest to the Araguari River and are characterized by pelitic sedimentation associated with fluvial and estuarine flood plains under influence of tides. The lakes are interconnected, suffer influence of flood pulses from the Tartarugal, Tartarugalzinho and Araguari rivers and the hydrodynamic and morphodynamic know edge is poor. Volume and area reduction, natural eutrophication, anthophic influence, hidrodynamic alterations, morphological changes and are factors which can contribute to the closing of such lakes on the Meridional Lake Belt. This belt is inside the boundaries of the Biological Reserve of Piratuba Lake, created in 1980 for integral protection. Due to the fragility of the environment together with the poor knowledge of the system and with the study area relevancy it is necessary to know the hydrodynamic and geoenvironmental processes. This work aims the characterization of morphodynamic and hydrodynamic processes in order to understand the geoambiental context of the Meridional Lake Belt, from the Comprido de Baixo Lake to the dos Ventos Lake, including the Tabaco Igarape. Methodology was based on the hydrodynamic data acquisition: liquid discharge (acoustic method), tides, bathymetry and the interpretation of multitemporal remote sensing images, integrated in a Geographic Information System (GIS). By this method charts of the medium liquid discharges of Lake Mutuco and Tabacco Igarape the maximum velocity of flow were estimated in: 1.1 m/s, 1.6 m/s and 1.6 m/s (rainy season) and 0.6 m/s, 0.6 m/s and 0.7 m/s (dry period), the maximum flow in: 289 m³/s, 297 m³/s and 379 m³/s (rainy season) and 41 m³/s , 79 m³/s and 105 m³/s (dry period), respectively. From the interpretation of multitemporal satellite images, maps were developed together with the analysis of the lakes and Tobaco Igarape evolution from 1972 to 2008, and were classified according to the degree of balance in the area: stable areas, eutrophic areas, areas of gain, and eroded areas. Troughout analysis of the balance of areas, it was possible to quantify the volume of lake areas occupied by aquatic macrophytes. The study sought to understand the hydrodynamic and morphodynamic processes occurring in the region, contributing to the elucidation of the processes which cause and/or favor geoenvironmental changes in the region; all such information is fundamental to making the management of the area and further definition of parameters for environmental monitoring and contributing to the development of the management plan of the Biological Reserve of Lake Piratuba. The work activities is a part of the Project "Integration of Geological, geophysical and geochemical data to Paleogeographic rebuilding of Amazon Coast, from the Neogene to the Recent
Resumo:
The structural framework of the sedimentary basins usually plays an important role in oil prospects and reservoirs. Geometry, interconectivity and density of the brittle features developed during basin evolution could change the permo-porous character of the rocks involved in generation, migration and entrapment of fluid flow. Once the structural characterization of the reservois using only sub-surface data is not an easy task, many studies are focused in analogous outcrops trying to understand the main processes by which brittle tectonic is archieved. In the Santana do Acaraú region (Ceará state, NE Brazil) a pack of conglomeratic sandstone (here named CAC) has its geometry controlled mainly by NE trending faults, interpreted as related to reactivation of a precambrian Sobral Pedro II Lineament (LSP-II). Geological mapping of the CAC showed a major NE-SW trending synform developed before its complete lithification during a dextral transpression. This region was then selected to be studied in details in order of constrain the cretaceous deformation and so help the understanding the deformation of the basins along the brazilian equatorial margin. In order to characterize the brittle deformation in different scales, I study some attributes of the fractures and faults such as orientation, density, kinematic, opening, etc., through scanlines in satellite images, outcrops and thin sections. The study of the satellite images showed three main directions of the macrostructures, N-S, NE-SW and E-W. Two of theses features (N-S and E-W) are in aggreement with previous geophysical data. A bimodal pattern of the lineaments in the CAC´s basement rocks has been evidenciated by the NE and NW sets of structures obtained in the meso and microscale data. Besides the main dextral transpression two others later events, developed when the sediments were complety lithified, were recognized in the area. The interplay among theses events is responsible for the compartimentation of the CAC in several blocks along within some structural elements display diferents orientations. Based on the variation in the S0 orientation, the CAC can be subdivided in several domains. Dispite of the variations in orientations of the fractures/faults in the diferents domains, theses features, in the meso and microscopic scale, are concentrated in two sets (based on their trend) in all domains which show similar orientation of the S0 surface. Thus the S0 orientation was used to group the domains in three major sets: i) The first one is that where S0 is E-W oriented: the fractures are oriented mainly NE with the development of a secondary NW trending; ii) S0 trending NE: the fractures are concentrated mainly along the trend NW with a secondary concentration along the NE trend; iii) The third set, where S0 is NS the main fractures are NE and the secondary concentration is NW. Another analized parameter was the fault/fracture length. This attribute was studied in diferent scales trying to detect the upscale relationship. A terrain digital model (TDM) was built with the brittlel elements supperposed. This model enhanced a 3D visualization of the area as well as the spatial distribution of the fault/fractures. Finally, I believe that a better undertanding of the brittle tectonic affecting both CAC and its nearby basement will help the future interpretations of the tectonic envolved in the development of the sedimentary basins of the brazilian equatorial margin and their oil reservoirs and prospects, as for instance the Xaréu field in the Ceará basin, which subsurface data could be correlated with the surface ones
Resumo:
The goal of this work comprises the detailed mapping of the coastal zone of the south coast of the State of Rio Grande do Norte. The emphasis of the study is the units of beachrocks and the features of the physical environment associated. The mapping of the beachrocks and of the adjacent coastal features is justified, among other aspects, by the fact that the beachrocks constitute an important protection agent against the sea erosion. By one side, they dissipate the energy of the sea waves and make possible the imprisonment of sediments in the foreshore. The beachrocks in the studied area are constituted of discontinuous strips, parallel to the coast line presenting emerged in some places, even in the highest tides, entirely submerged or partially buried by coastal sediments. These sandstones compose the landscape of big part of the coast and they are responsible for the partial dissipation of the energy of the waves on the studied coast. The methodology used in this work consisted of different techniques were used, as the use of aerial pictures of small format (FAPEFs), acquisition of data of system of global positioning (GPS) and later elaboration of thematic maps and of digital models of soil (MDTs). The results obtained in the mapping of the use and occupation of the soil, demonstrate the existence of strong human pressure in the coastal area (built lots and no built), occupying about 54,74% of built areas. This problem has been taking to degradation risks due to the inconsequent expansion of divisions into lots and tourist enterprises. The MDT came as an excellent resource, as visual as functional, being possible to visualize several angles and to act in three dimensions the relief of the area in study, as well as to identify the present features in the coastal area. By the importance of the bodies of beachrocks as a protection agent against the coastal erosion, faces were delimited in the sandstones based in geometric criteria, classifying them in, central face, outside face, inside face, break and undermiming. These last two associates to the erosion and washout in the base of these bodies. Field data indicate clearly that the most important process in the fracturing of the bodies is associated with mechanisms related to the gravity, being the joints formed by processes of gravitational sliding. Finally, the mapping of the coastal zone starting from aerial pictures of small format it made possible the identification of the elements that compose the beach strip, for accomplishing with larger detailed level and by presenting a better monitoring of the dynamics of the coastal zone
Resumo:
The Portalegre shear zone (ZCPa), which is located in the Rio Grande do Norte and Paraíba states (Northeastern Brazil), is na important right-lateral, northeast-trending lineament formed during the Brazilian Orogenic Cicle). The ZCPa experienced na important brittle reactivation from the Mesozoic until the present. This reactivation led to the formation of the Gangorra, Pau dos Ferros, Coronel João Pessoa, Icozinho and Rio do Peixe basins. The reactivation northern parto f the ZCPa that marks the boundary of the Potiguar Basin is denominated Carnaubais Fault. Several fracture patterns were mapped along the ZCPa. Samples were collected in Neoproterozoic granite outcrops, along the ZCPa. These samples yielded AFT ages from 86±13 to 376±57 Ma, and the mean track length from 10.9±0.8 to 12.9±1.5 mm. Samples from the East block yielded mean ages of 103 Ma, mean track lengtn 12,1mm, and mean altitude 250m, whereas samples from West block yielded mean ages of 150 Ma, which reach 345 Ma and 220 Ma in the Pau dos Ferros and Coronel João Pessoa basins, respectively. Thermal history models were sorted out for each crustal block. Samples from West block recorded a thermal history from Carboniferous Period until the Permiano, when the block experienced gradual uplift until the Cretaceous, when it underwent downfaulting and heating until the Tertiary, and it eventually experienced a rapid uplift movement until recent times. Samples from the East block presented the same cooling and heating events, but at they occurred different times. The East block thermal record started ~140 Ma, when this block experienced cooling until ~75 Ma. Both blocks show a denundacion/erosional history more similar in the Tertiary. The AFT data indicate an important tectonic event ~140 Ma, when the West block experienced downfaulting and the East block experienced uplift. This tectonic process led to the generation of several sedimentary basins in the region, including the Potiguar basin. This tectonic event is also interpreted as a rift process caused by an E-W-trending extension. It the Tertiary, some heating events can be tentatively attributed to the macau volcanic event
Resumo:
This study had to aimed to characterize the sediments of shallow continental shelf and realize the mapping of features visible for satellite images by using remote sensing techniques, digital image processing and analysis of bathymetry between Maxaranguape and Touros - RN. The study s area is located in the continental shallow shelf of Rio Grande do Norte, Brazil, and is part of the Environmental Protection Area (APA) of Coral Reefs. A total of 1186 sediment samples were collected using a dredge type van veen and positioning of the vessel was made out with the aid of a Garmin 520s. The samples were treated In the laboratory to analyze particle size of the sediment, concentration of calcium carbonate and biogenic composition. The digital images from the Landsat-5 TM were used to mapping of features. This stage was used the band 1 (0,45-1,52 μm) where the image were georeferenced, and then adjusting the histogram, giving a better view of feature bottom and contacts between different types of bottom. The results obtained from analysis of the sediment showed that the sediments of the continental shelf east of RN have a dominance of carbonate facies and a sand-gravelly bottom because the region is dominated by biogenic sediments, that are made mainly of calcareous algae. The bedform types identified and morphological features found were validated by bathymetric data and sediment samples examined. From the results obtained a division for the shelf under study is suggested, these regions being subdivided, in well characterized: (1) Turbid Zone, (2) Coral Patch Reefs Zone, (3) Mixed Sediments Carbonates Zone, ( 4) Algae Fouling Zone, (5) Alignment Rocky Zone, (6) Sand Waves Field (7) Deposit siliciclastic sands
Resumo:
The Cumuruxatiba basin is located at the southern coast State of Bahia in northeastern of Brazil. This basin was formed in distensional context, with rifting and subsequent thermal phase during Neocomian to late Cretaceous. At Cenozoic ages, the Abrolhos magmatism occurs in the basin with peaks during the Paleocene and Eocene. In this period, there was a kinematic inversion in the basin represented by folds related to reverse faults. Structural restoration of regional 2D seismic sections revealed that most of the deformation was concentrated at the beginning of the Cenozoic time with the peak at the Lower Eocene. The post-Eocene is marked by a decrease of strain rate to the present. The 3D structural modeling revealed a fold belt (trending EW to NE-SW) accommodating the deformation between the Royal Charlotte and Sulphur Minerva volcanic highs. The volcanic eruptions have caused a differential overburden on the borders of the basin. This acted as the trigger for halokinesis, as demonstrated by physical modeling in literature. Consequently, the deformation tends to be higher in the edges of the basin. The volcanic rocks occur mainly as concordant structures (sills) in the syn-tectonic sediment deposition showing a concomitant deformation. The isopach maps and diagrams of axis orientation of deformation revealed that most of the folds were activated and reactivated at different times during the Cenozoic. The folds exhibit diverse kinematic patterns over time as response to behavior of adjacent volcanic highs. These interpretations allied with information on the petroleum system of the basin are important in mapping the prospects for hydrocarbons
Resumo:
Due to its high resolution, Ground Penetrating Radar (GPR) has been used to image subsurface sedimentary deposits. Because GPR and Seismic methods share some principles of image construction, the classic seismostratigraphic interpretation method has been also applied as an attempt to interpret GPR data. Nonetheless some advances in few particular contexts, the adaptations from seismic to GPR of seismostratigraphic tools and concepts unsuitable because the meaning given to the termination criteria in seismic stratigraphy do not represent the adequate geologic record in the GPR scale. Essentially, the open question relies in proposing a interpretation method for GPR data which allow not only relating product and sedimentary process in the GPR scale but also identifying or proposing depositional environments and correlating these results with the well known Sequence Stratigraphy cornerstones. The goal of this dissertation is to propose an interpretation methodology of GPR data able to perform this task at least for siliciclastic deposits. In order to do so, the proposed GPR interpretation method is based both on seismostratigraphic concepts and on the bounding surface hierarchy tool from Miall (1988). As consequence of this joint use, the results of GPR interpretation can be associated to the sedimentary facies in a genetic context, so that it is possible to: (i) individualize radar facies and correlate them to the sedimentary facies by using depositional models; (ii) characterize a given depositional system, and (iii) determine its stratigraphic framework highligthing how it evolved through geologic time. To illustrate its use the proposed methodology was applied in a GPR data set from Galos area which is part of the Galinhos spit, located in Rio Grande do Norte state, Northeastern Brazil. This spit presents high lateral sedimentary facies variation, containing in its sedimentary record from 4th to 6th cicles caused by high frequency sea level oscillation. The interpretation process was done throughout the following phases: (i) identification of a vertical facies succession, (ii) characterization of radar facies and its associated sedimentary products, (iii) recognition of the associated sedimentary process in a genetic context, and finally (iv) proposal of an evolutionay model for the Galinhos spit. This model proposes that the Galinhos spit is a barrier island constituted, from base to top, of the following sedimentary facies: tidal channel facies, tidal flat facies, shore facies, and aeolic facies (dunes). The tidal channel facies, in the base, is constituted of lateral accretion bars and filling deposits of the channels. The base facies is laterally truncated by the tidal flat facies. In the foreshore zone, the tidal flat facies is covered by the shore facies which is the register of a sea transgression. Finally, on the top of the stratigraphic column, aeolic dunes are deposited due to areal exposition caused by a sea regression
Correlação entre contexto morfoestrutural e sismicidade nas regiões de João Câmara e São Rafael (RN)
Resumo:
This MSc thesis describes brittle deformation in two seismic zones located in north-eastern Brazil: João Câmara and São Rafael, Rio Grande do Norte State. Both areas show seismogenic faults, Samambaia and São Rafael, indicated by narrow zones of epicentres with a strike of 040o, a lenght of 30 km and 4 km, and a depth of 1-12 and 0,5-4 km, respectively. The first seismological and geological studies suggested blind faults or faults that were still in the beginning of the nucleation process. The region is under E-W-oriented compression and is underlain by Precambrian terrains, deformed by one or more orogenic cycles, which generated shear zones generally marked by strong pervasive foliation and sigmoidal shapes. The crystalline basement is capped by the Cretaceous Potiguar basin, which is also locally capped by Pliocene continental siliciclastic deposits (Barreiras Formation), and Quaternary alluvium. The main aim of this study was to map epicentral areas and find whether there are any surface geological or morphotectonic expression related to the seismogenic faults. A detailed geological map was carried out in both seismic areas in order to identify brittle structures and fault-related drainage/topographic features. Geological and morphotectonic evidence indicate that both seismogenic faults take place along dormant structures. They either cut Cenozoic rocks or show topographic expression, i.e., are related to topographic heights or depressions and straight river channels. Faults rocks in the Samambaia and São Rafael faults are cataclasite, fault breccia, fault gouge, pseudotachylyte, and quartz veins, which point to reactivation processes in different crustal levels. The age of the first Samambaia and the São Rafael faulting movement possibly ranges from late Precambrian to late Cretaceous. Both fault cut across Precambrian fabric. They also show evidence of brittle processes which took place between 4 and 12 km deep, which probably have not occurred in Cenozoic times. The findings are of great importance for regional seismic hazard. They indicate that fault zones are longer than previously suggested by seismogenic studies. According to the results, the methodology used during this thesis may also be useful in other neotectonic investigation in intraplate areas