21 resultados para prostheses
Resumo:
Titanium is a biomaterial widely employed in biomedical applications (implants, prostheses, valves, stents). Several heat treatments are usually used in order to obtain physical properties required to different applications. This work studied the influence of the heat treatment on microstructure of commercial pure titanium, and their consequences in growth and proliferation of MC3T3-E1 cells. Discs of titanium were treated in different temperatures, and characterized by optical microscopy, image analysis, wettabillity, roughness, hardness and X-ray diffraction. After the heat treatment, significant modifications in these properties were observed. Pattern images of titanium, before and after the cell culture, were compared by overlapping to analyze the influence of microstructure in microstructure and preferences guidance cells. However, in general, titanium discs that showed a higher residual strength also presented an increase of cells numbers on surface
Resumo:
Ceramics materials have good properties including chemical stability, high hardness and wear resistance. Moreover, due to its fragility, can suffer failure under relatively low levels of tension. Actually zirconia is the material of choice in metal free dental prostheses used in dentistry due its inertia in physiological environment, good bending strength, hardness and fracture toughness. The alumina and mixed tungsten and titanium carbides additions, acting as reinforcement elements in the zirconia matrix, have as their main objective the improvement of mechanical properties of this material. In this work, samples of zirconia, zirconia with 30% wt of alumina and zirconia with 30% wt mixed carbides were analyzed. The samples were sintered by uniaxial hot pressing on 30 MPa pressure, for 1 hour in an argon atmosphere. They were physically characterized by porosity and density measurements, and mechanically by 3-points bending strength and Vickers microhardness. The X-ray diffraction was used for the phase identifications and microstructure was examined by scanning electron microscopy (SEM). The addition of mixed carbides as reinforcement elements in zirconia matrix provides improvements in all properties analyzed in this work. The alumina addition has dropped the zirconia strength, although it caused improvement in other properties
Resumo:
Mammography is a diagnostic imaging method in which interpretation depends on knowledge of radiological aspects as well as the clinical exam and pathophysiology of breast diseases. In this work a mammography phantom was developed to be used for training in the operation of mammographic x-ray equipment, image quality evaluation, self-examination and clinical examination of palpation. Polyurethane was used for the production of the phantoms for its physical and chemical properties and because it is one of the components normally used in prostheses. According to the range of flexibility of the polyurethane, it was possible to simulate breasts with higher or lower amount of adipose tissue. Pathologies such as areolar necrosis and tissue rejection due to surgery reconstruction after partial mastectomy were also simulated. Calcifications and nodules were simulated using the following materials: polyethylene, poly (methyl methacrylate), polyamide, polyurethane and poly (dimethyl silicone). Among these, polyethylene was able to simulate characteristics of calcification as well as breast nodules. The results from mammographic techniques used in this paper for the evaluation of the phantoms are in agreement with data found in the literature. The image analyses of four phantoms indicated significant similarities with the human skin texture and the female breast parenchyma. It was possible to detect in the radiographic images produced regions of high and low radiographic optical density, which are characteristic of breasts with regions of different amount of adipose tissue. The stiffnesses of breast phantoms were adjusted according to the formulation of the polyurethane which enabled the production of phantoms with distinct radiographic features and texture similar to human female breast parenchyma. Clinical palpation exam of the phantoms developed in this work indicated characteristics similar to human breast in skin texture, areolar region and parenchyma
Resumo:
At present, the material of choice for performing aesthetic dental prosthetic work is in the ceramic. Among them, the ceramic base of stabilized zirconia with 3% yttria (3Y - TZP) stand out for having excellent physical and mechanical properties. During the machining of blocks of zirconia in the laboratory to prepare the various types of prostheses, much of the material is given off in the form of powder, which is subsequently discarded. The waste of this material results in financial loss, reflecting higher final cost treatment for patients, as well as damage to the environment, thanks to the processes involved in the manufacture and disposal of the ceramic. This research, pioneered the recycling of zirconium oxide powder obtained during milling of dental crowns and bridges, we highlight the social and environmental aspects and aims to establish a protocol for the reuse of waste (powder of zirconia Zirkonzahn® system) discarded to obtain a new block of compacted zirconia to maintain the same mechanical and microstructural properties of commercial high-cost imported material. To compare with the commercial material, samples were uniaxially (20 MPa) and isostatically (100 MPa), and its mechanical and microstructural characterization was performed through tests of density, porosity, dilatometry, X-ray diffraction (XRD), hardness, fracture toughness, resistance to fracture electron microscopy (SEM) and analysis of grain size. The results observed in the samples were isostatically pressed similiares those obtained with samples from the commercial material demonstrating the viability of the process
Resumo:
The manufacture of prostheses for lower limb amputees (transfemural and transtibial) requires the preparation of a cartridge with appropriate and custom fit to the profile of each patient. The traditional process to the patients, mainly in public hospitals in Brazil, begins with the completion of a form where types of equipment, plugins, measures, levels of amputation etc. are identified. Currently, such work is carried out manually using a common metric tape and caliper of wood to take the measures of the stump, featuring a very rudimentary, and with a high degree of uncertainty geometry of the final product. To address this problem, it was necessary to act in two simultaneously and correlated directions. Originally, it was developed an integrated tool for viewing 3D CAD for transfemoral types of prostheses and transtibial called OrtoCAD I. At the same time, it was necessary to design and build a reader Mechanical equipment (sort of three-dimensional scanner simplified) able to obtain, automatically and with accuracy, the geometric information of either of the stump or the healthy leg. The methodology includes the application of concepts of reverse engineering to computationally generate the representation of the stump and/or the reverse image of the healthy member. The materials used in the manufacturing of prostheses nor always obey to a technical scientific criteria, because, if by one way it meets the criteria of resistance, by the other, it brings serious problems mainly due to excess of weight. This causes to the user various disorders due to lack of conformity. That problem was addressed with the creation of a hybrid composite material for the manufacture of cartridges of prostheses. Using the Reader Fitter and OrtoCAD, the new composite material, which aggregates the mechanical properties of strength and rigidity on important parameters such as low weight and low cost, it can be defined in its better way. Besides, it brings a reduction of up steps in the current processes of manufacturing or even the feasibility of using new processes, in the industries, in order to obtain the prostheses. In this sense, the hybridization of the composite with the combination of natural and synthetic fibers can be a viable solution to the challenges offered above
Resumo:
Due to advances in the manufacturing process of orthopedic prostheses, the need for better quality shape reading techniques (i.e. with less uncertainty) of the residual limb of amputees became a challenge. To overcome these problems means to be able in obtaining accurate geometry information of the limb and, consequently, better manufacturing processes of both transfemural and transtibial prosthetic sockets. The key point for this task is to customize these readings trying to be as faithful as possible to the real profile of each patient. Within this context, firstly two prototype versions (α and β) of a 3D mechanical scanner for reading residual limbs shape based on reverse engineering techniques were designed. Prototype β is an improved version of prototype α, despite remaining working in analogical mode. Both prototypes are capable of producing a CAD representation of the limb via appropriated graphical sheets and were conceived to work purely by mechanical means. The first results were encouraging as they were able to achieve a great decrease concerning the degree of uncertainty of measurements when compared to traditional methods that are very inaccurate and outdated. For instance, it's not unusual to see these archaic methods in action by making use of ordinary home kind measure-tapes for exploring the limb's shape. Although prototype β improved the readings, it still required someone to input the plotted points (i.e. those marked in disk shape graphical sheets) to an academic CAD software called OrtoCAD. This task is performed by manual typing which is time consuming and carries very limited reliability. Furthermore, the number of coordinates obtained from the purely mechanical system is limited to sub-divisions of the graphical sheet (it records a point every 10 degrees with a resolution of one millimeter). These drawbacks were overcome by designing the second release of prototype β in which it was developed an electronic variation of the reading table components now capable of performing an automatic reading (i.e. no human intervention in digital mode). An interface software (i.e. drive) was built to facilitate data transfer. Much better results were obtained meaning less degree of uncertainty (it records a point every 2 degrees with a resolution of 1/10 mm). Additionally, it was proposed an algorithm to convert the CAD geometry, used by OrtoCAD, to an appropriate format and enabling the use of rapid prototyping equipment aiming future automation of the manufacturing process of prosthetic sockets.
Resumo:
Composite materials have a wide application in various sectors, such as the medical field in the manufacture of prostheses, in automotive and aerospace. Thus it is essential to the development of new composite and a better understanding in the face of various loading conditions and service. Several structural elements are manufactured in the presence of geometric discontinuity (notch, hole, etc ) in their longitudinal sections and/or cross-cutting, and these affect the mechanical response of these elements. The objective is to study the mechanical response of laminated polymer matrix hybrid composites reinforced with glass fiber/jute in a uniaxial tensile test. The mechanical response takes in account both the influence of the presence of a geometric discontinuity (semicircular notches) and the orientation of fibers in the layers (anisotropy). The semicircular notches are located in longitudinal section (with a reduction in cross section) of the same. In this analysis, the anisotropy is characterized by types of configurations (with different orientations of fibers in the outer layers). A comparative study of mechanical properties with and without the presence of notches is developed. Both configurations consist of four layers of woven jute fiber bidirectional and a central layer of bidirectional woven glass fibers. In addition to the mechanical properties was also studied the characteristics of the fracture developed in each composite laminate. The results showed that in the comparative study, the anisotropy and the presence of semicircular notches directly influences the mechanical behavior of laminates composites, mainly in reducing the tensile strength, and well as the final characteristics of the fracture
Resumo:
Currently there is still a high demand for quality control in manufacturing processes of mechanical parts. This keeps alive the need for the inspection activity of final products ranging from dimensional analysis to chemical composition of products. Usually this task may be done through various nondestructive and destructive methods that ensure the integrity of the parts. The result generated by these modern inspection tools ends up not being able to geometrically define the real damage and, therefore, cannot be properly displayed on a computing environment screen. Virtual 3D visualization may help identify damage that would hardly be detected by any other methods. One may find some commercial softwares that seek to address the stages of a design and simulation of mechanical parts in order to predict possible damages trying to diminish potential undesirable events. However, the challenge of developing softwares capable of integrating the various design activities, product inspection, results of non-destructive testing as well as the simulation of damage still needs the attention of researchers. This was the motivation to conduct a methodological study for implementation of a versatile CAD/CAE computer kernel capable of helping programmers in developing softwares applied to the activities of design and simulation of mechanics parts under stress. In this research it is presented interesting results obtained from the use of the developed kernel showing that it was successfully applied to case studies of design including parts presenting specific geometries, namely: mechanical prostheses, heat exchangers and piping of oil and gas. Finally, the conclusions regarding the experience of merging CAD and CAE theories to develop the kernel, so as to result in a tool adaptable to various applications of the metalworking industry are presented
Resumo:
The non-adaptation of the removable partial prosthesis (RPP) base to fibromucosal tissue is caused by resorption of residual ridges (RRR). The onset of bone resorption, which occurs after tooth extraction and continues throughout life, is accelerated by local or systemic factors. Aim: Assess the degree of non-adaptation of removable partial prosthesis saddles and the factors that influence it. Methodology: A sectional study was conducted with 81 patients using RPP who had their prostheses installed between 2003 and 2007 (1 to 5 years of use) at the Faculty of Dentistry of the Universidade Federal do Rio Grande do Norte (UFRN). After anamnese and clinical examination, a cast was made with polyether-based material, using the base of the prosthesis to make the impression. The base of the saddle was loaded with the casting material and positioned in the mouth, applying pressure on the supports. After polymerization, the material was removed from the saddle and measurements were taken at 3 different points using a pachymeter. Results: The non-adaptation of the saddle increased significantly with years of use (p = 0.005). The tooth-tissue supported prostheses obtained higher mean non-adaptation values than those of tooth supported prostheses (p < 0.001). Flaccid mucosa showed the worst non-adaptation results, which were statistically different from resilient mucosa (p < 0.001). The greater the extension of the saddle, the greater the non-adaptation (p < 0.001). The natural tooth antagonistic arch yielded better results than did RPP and total prosthesis (p < 0.001). Saddle non-adaptation at the free end was less near the pillar tooth and greater in the more posterior region (p < 0.001). When adaptation of the supports to the niches was poor, greater saddle non-adaptation occurred than when it was good or fair (p < 0.001). Saddles located in the posterior region of the arch had greater non-adaptation than those in the anterior region (p = 0.023). Conclusion: The mean non-adaptation of the saddle to the residual ridges was 0.27 mm. It can be concluded that, even with the use of RPP, bone height reduction was slight within the 1-5-year period of use. The following are factors that influence adaptation of the RPP saddle base: years of use, age, force transmission path to the alveolar bone, location of the toothless area, antagonistic arch, type of mucosa, adaptation of supports to the niche and extension of the saddle
Resumo:
Population aging is one of the greatest challenges to contemporary public health and, in this perspective, the functional capacity emerges as an important feature in geriatric assessment. The oral health of elderly, in turn, deserves special attention because, historically, in the dental services, this population group was not considered a priority for attention, which is verified by high rates of edentulism found even among these individuals. The present study proposes to examine the relationship between oral health status and functional capacity in an elderly population. To this end, intra-oral epidemiological examination was performed to assess the degree of dental caries, periodontal status, use and need of prosthesis and the presence of lesions. Functional capacity was assessed by the Independence in Activities of Daily Living, which considers the independence or not in the performance of six self-care functions. Socioeconomic and demographic characteristics and general health status were also investigated, in view of the possibility of intervention of these variables in the investigated relation. An factor analysis of the principal components was conducted which resulted four indicators of oral health conditions, representative of the population studied. 441 seniors were enrolled with mean age of 71.7 (± 8.7) years, the majority being female (68%). Functional capacity was dichotomized into completely independent individuals (89.6%) and dependent on at least one of the functions considered (10.4%). There was an association between functional capacity and the indicators related to the presence of many teeth and dental caries, and to that associated with the use and need of prostheses. These associations in turn, lost statistical significance when adjusting for confounding variables, combined in separate models for each indicator. Some of these variables, however, remained associated with functional capacity. It is considered that the study of oral health status of elderly, associeted with the search for an association with functional capacity is important in the construction of indicators necessary for planning preventive and therapeutic interventions that reduce the risk for loss of ability in daily physical functions and their consequences, as the harm in the oral self-care
Resumo:
The literature has shown a relation between periodontics and the removable partial denture (RPD), with progressive destruction observed in the support structures. The aim of this study was to clinically assess periodontal condition in users of removal partial denture (RPD), and compare right abutments teeth, indirect abutments and controls before installation and after 1 year, in addition to comparing tooth-supported and tooth mucosa-supported abutments. A total of 50 patients, 32 women and 18 men, mean age of 45 years, took part in the study. The patients were examined by a single examiner at prosthesis installation and after 3, 6, 9 and 12 months. The following were verified at each examination: Probe Depth (PD), Plaque Index (PI), Gingival Index (GI), the amount of Keratinized Mucosa (KM), Gingival Recession (GR) and Dental Mobility (DM); in addition patients received oral hygiene orientation, accompanied by prophylaxis, periodontal scaling and root planing (PSRP), when necessary. Analysis of Variance (ANOVA) with Tukey-Kramer post test was used to assess the dependent variables (PD, PI, KM, GR) of the three groups over time while Friedman s test was used for GI. To assess the outcomes of prosthesis type in the right abutment group, a confidence interval-based analysis was performed. The results showed that the control group was the least compromised in all the variables studied. With respect to development of the groups over time, it was verified that the measures for GR, PD, GI and KM increased from initial examination to 1 year of use in all the groups, but only PI showed a significant increase. There was a non-discriminatory low prevalence of dental mobility. The tooth mucosa-supported prosthesis had significantly higher values for GR, GI and PI and significantly lower ones for KM when compared to tooth-supported. Over time, both types of prostheses showed no significant differences from initial to final examination for the variables GR, PD, KM and GI, with PI significant only for tooth-supported. The results showed that the teeth most involved in RPD design had greater potential of periodontal damage, probably because of greater dental biofilm accumulation. Abutments elements adjacent to the free extremities had less favorable periodontal condition than those adjacent to interpolated spaces, but the use of RPD did not worsen the initial condition
Resumo:
The evaluation criteria of the cases treated with dental implants are based on clinical and radiographic tests. In this context it is important to conduct research to determine prognosis of different types of prosthetic rehabilitation and determination of the main problems affecting this type of treatment. Thus, the objective of this study was to assess the prosthetic conditions of individuals rehabilitated with implant-supported prosthesis. In this cross-sectional study 153 patients were treated, accounting for a sample of 509 implants. The failures were observed by clinical and radiographic examination. The results showed that the fracture (0.2%) loss (0.4%) and loosening of the screws (3.3%) were failures are less frequent. The fracture structures as the resin (12.4%), porcelain (5.5%) and metallic (1.5%), loss of resin that covers the screw (23.8%) and loss of retention overdentures on implants (18.6%) had a higher occurrence. The failure of adaptation between the abutment and the implant (6.9%) and especially between the prosthesis and the abutment (25.4%) had a high prevalence and, when related to other parameters showed a significant association, particularly with the cemented prosthesis (OR = 6.79). It can be concluded that to minimize the appearance of failures, protocols must be observed from diagnosis to the settlement and control of prostheses on implants, particularly with respect to technical steps of the making of the prosthesis and care in radiographic evaluating the fit between their components
Resumo:
Introduction: The rehabilitation of edentulous patients is one of the main challenges of Dentistry. Objective: To assess the satisfaction and the impact of oral health on quality of life of patients rehabilitated with conventional complete dentures in both arcades. Method: A clinical trial with 25 patients rehabilitated with CCD was conducted. The impact of oral health in individuals quality of life was evaluated through the Brazilian version of the OHIP-Edent and the patient satisfaction was evaluated using a specific questionnaire. The instruments were applied before and 3 months after rehabilitation. Results: There was a statistically significant improvement (p <0.001) on the impact of the quality of life of the denture users after the new rehabilitation. The analysis of 4 OHIP domains also showed statistically significant improvement (p <0.001). The final overall satisfaction with the dentures was statistically superior to initial satisfaction (p <0.001). The analysis of the specific aspects of satisfaction with CCD after 3 months of rehabilitation also showed significant results in the improvement of every aspect. Conclusion: Patients disappointed with their dentures, have their quality of life improved after the new rehabilitation, reducing the negative impact of the prostheses on oral health, and improving their satisfaction with the rehabilitation.
Resumo:
This study presents a simple, fast and low cost technique for fabrication new conventional dentures from the duplication of old prosthesis in use by the patient. Colorless acrylic resin was poured into the moulds obtained by duplication of prosthesis. With the replicas obtained a functional impressions using polyether should be performed and they are stabilized with occlusal registration in acrylic resin. The molds need to be castings and mounted on an semi-adjustable articulator. The artificial teeth are positioned with the assistance of a guide made condensation silicone to reproduce the positioning of the teeth of the old prosthesis and fixed with wax 7. After approval of the teeth on the trial in wax, without adjustment of the planes, the prosthesis may be processed in the laboratory. After occlusal adjustment in the articulator the same can be installed.
Resumo:
An appropriate design of a prosthetic rehabilitation should not impute the restoration of occlusal vertical dimension (OVD) to new prostheses, at the risk of the patient does not adapt to a new condition, since a certain amount of time is often necessary for adaptation to a new OVD. This article performed prosthetic rehabilitation with an overlay provisional removable partial denture prior to definitive treatment because the patient showed a considerable decrease in the OVD. Three techniques for OVD determination were used. It is possible to conclude that the use of interim removable partial dentures is of great importance at the beginning of the rehabilitation treatment in order to adapt the patient to a new occlusal condition.