22 resultados para biofuels
Resumo:
The use of biofuels remotes to the eighteenth century, when Rudolf Diesel made the first trials using peanut oil as fuel in a compression ignition engine. Based on these trials, there was the need for some chemical change to vegetable oil. Among these chemical transformations, we can mention the cracking and transesterification. This work aims at conducting a study using the thermocatalytic and thermal cracking of sunflower oil, using the Al-MCM-41 catalyst. The material type mesoporous Al-MCM-41 was synthesized and characterized by Hydrothermical methods of X-ray diffraction, scanning electron microscopy, nitrogen adsorption, absorption spectroscopy in the infrared and thermal gravimetric analysis (TG / DTG).The study was conducted on the thermogravimetric behavior of sunflower oil on the mesoporous catalyst cited. Activation energy, conversion, and oil degradation as a function of temperature were estimated based on the integral curves of thermogravimetric analysis and the kinetic method of Vyazovkin. The mesoporous material Al-MCM-41 showed one-dimensional hexagonal formation. The study of the kinetic behavior of sunflower oil with the catalyst showed a lower activation energy against the activation energy of pure sunflower oil. Two liquid fractions of sunflower oil were obtained, both in thermal and thermocatalytic pyrolisis. The first fraction obtained was called bio-oil and the second fraction obtained was called acid fraction. The acid fraction collected, in thermal and thermocatalytic pyrolisis, showed very high level of acidity, which is why it was called acid fraction. The first fraction was collected bio-called because it presented results in the range similar to petroleum diesel
Resumo:
This doctoral thesis presents an analysis of the production of bicarbonates and related regional development in Brazil. It is widely believed that one of Brazil s vocations lies in the agro-energy sector. However, current national agro-energy policies, together with the experience of Petrobras (the national oil company) in rural settlements in the state of Rio Grande do Norte, show that Brazil has fallen short of effectively including the North and Northeast regions of the country, let alone small-scale rural producers (residing in rural settlements or not), in the development process and related benefits from the country s participation in the current world energy grid. The methodology entails secondary research related to the theme, such as books, official documents, websites and statistical databases from diverse sources, in addition to an analysis of statements from interviews of Petrobras representatives and other important scientific, institutional and labor union authorities, in relation to agro-energy issues and the socio-economic participation of family-based agriculture in this process. Principal findings show a correlation between agro-energy and regional development, creating the potential for numerous opportunities and challenges. Findings demonstrate the possibility of reversing/reducing historically rooted indices of hunger and poverty that continue to devastate the North and Northeast regions. At the same time, the thesis points to a potentially catastrophic increase in regional disparities, should the present historic moment not be seized upon so as to include these regions. Classic examples of non-policy at the federal level are presented as evidence of the absence of a regionally focused agroenergy policy in the current government, reinforced by the experiences of Petrobras in the Rio Grande do Norte rural settlements. Finally, the thesis concludes that there is an urgent need to create a government-sponsored enterprise (with a structure similar to Petrobras) with the purpose of implementing a truly broad and inclusive development process for the bicarbonates production sector, while remaining attentive to Brazil s opportune and critical role in the world s current agro-energy scenario.
Resumo:
The goal of this study is to investigate about the existence or absence of environmental dumping in the production of fuel ethanol in Brazil, as well as identifying the reasons why the figure of ecological dumping is pernicious to the principles enumerated in constitutional economic order, in particular the principle of free competition. In the twenty-first century environmental issues gained momentum and importance in these terms, which was seen as a mere fallacy given the concern of governments of various countries, after all, environmental protection shows up as the only means of bringing about the maintenance of life at planet. Indeed, it is essential to halt the drastic effects of climate change, and think fast and efficient solutions. Undoubtedly, the contemporary requirements that resulted in the transition to a new economy brings with it the duty of enterprise search for sustainability, and this behavior can not be passive, otherwise it is imperative to work hard and incessant economic agents, even if initially costs are high, this step will ensure a production accountable, transparent and free from accusations of environmental degradation. It is also intended to study the importance of the sector not only as a source of economic growth, but mainly, its contribution to national development, without forgetting that this is devoted in the Constitution of 1988 as one of the objectives of the Federative Republic of Brazil. In fact, the criticism most common perceptions about the production of biofuels, said the interests of the countries producing them in large scale, will eventually generate a exhaustion of soil and a significant increase in food prices. However, the ethanol produced in Brazil is unique in that it is produced from cane sugar, a product is not intended for human or animal, not to mention that the recovery of land just to the rotation with the planting other cultures. It is expected that environmental certifications are useful to demonstrate the quality of ethanol for export and to refute unfounded criticism. Finally, this study will be analyzed further solutions for the plants to develop an economic activity without damaging the environment and in compliance with Brazilian law
Resumo:
The gradual inclusion of biofuels is a necessary change that countries must include in their energy mixes. Energy sources still widely used in the world, such as oil and coal, are endowed with a high pollution load to the environment, bringing damages to the water, to the air and to humans as well. In addition, although there are conflicting studies, they are also identified as major causes of the greenhouse effect and the global warming phenomenon. They are, moreover, finite sources of energy, given that its reserves will surely run out. However, even if the introduction of biofuels, such as ethanol, in the energy mix is crucial for the survival of the present and future populations, this insertion cannot settle so disorderly and, thus, one must ensure the quality of these resources and promote transparency in international trade. In this manner, a certification process for ethanol is essential to attest that this biofuel meets the sustainable requirements defined for its production. Hence, this study sought to address the importance of the adoption of certification in the ethanol industry, according to the principle of sustainable development, by analyzing the evolution of its concept, its combination with the fundamental objectives sculptured in the Constitution of 1988, its regulation under Brazilian laws and the need for a balance between economic activities and the mentioned principle. The work also encompassed the criteria used to establish certification standards and their participating actors, combined with a study of ongoing initiatives. Finally, the consequences of the adoption of a certification process for ethanol in Brazil were presented, both in terms of sustainable development and in international trade
Resumo:
The neoconstitutionalism led to a process of ethical revaluation of the normative systems and the process of constitutionalization of the many fields of law. This study examines the consequences of this process in criminal law, so important a Law field for the protection of the most valuable assets by the society, including the fundamental guarantees, thus emphasizing the necessity of protection of the collective and individual rights, which are guided by the observance of the defendants individual rights in the course of criminal proceedings and the search for the best efficiency of penal protection, according to the corollaries of defense against the state (prohibition of the excess or Übermassverbot) and the provision of rights by the state (prohibition of insufficient protection or Untermassverbot). The offense of fuel adulteration is taken as an object of study, since it is a vital market to a nation dependent of people and good s movement for their living, driven by fossil and biofuels. Such a crime affects essential legal interests to the development of society, interests such as the environment, consumer relations and economic order, particularly the principle of free competition. This paper seeks to analyze the need of a greater efficiency of this particular criminal protection, once concluded the conduct harm and social fear as a consequence by it as growing, and therefore having its former crime type, engraved in Article 1 of Law No. 8.176/1991, rewritten in compliance with the criminal law s principle of legality. Thus, the reformation proposals and legislative creation involving this crime were observed, with emphasis on the bill No. 2498/2003, which keeps it as blank heterogeneous criminal norm, kind of penal normative whose constitutionality is raised, including the forethought of criminal responsibility in the perpetrating of the offense as culpable and subsequently increasing the applicable minimum penalty, as well as the inclusion of new activities in the typical nucleus
Resumo:
natural resources that still enjoy, in the certainty that if we do not, could culminate at the end of that remains. The environmental contamination by fuels in the retail service of oil and biofuels, has been a subject of growing research in Brazil, due to the large pollution potential of this activity. The aim of this study was to evaluate the importance of implementing the Environmental Management System (EMS) in fuel retail service stations in the city of Parnamirim-RN, but also describe the current situation the same as licensing and environmental characterization; identify existing barriers to implementation of EMS on the costs, technologies, knowledge, vision, present the potential benefits for the implementation of the EMS (social, economic and environmental), to identify the existence of plans for future action to implement the EMS , as a subsidy to promote the implementation of it. The methodology was developed through analysis of documents provided by the environmental agency responsible for licensing of retail service stations and fuel pala ANP. For data collection, we used the questionnaire was applied directly to managers or managers of sub-stations. Data were collected in 12 of 30 posts in the municipality. For purposes of data treatment was performed a descriptive analysis with respect to the opinion of twelve managers (respondents). The data acquired, according to the Likert scale were tabulated and analyzed using software SPSS 17.0 and Excel 2003, it was generated tables and graphs to observe the behavior of the data. The results showed that most respondents have a schooling level higher (58.3%) of the jobs surveyed 50% work on average 6 to 10 years and 41.6% are in operation for over 11 years , 75.0% do not have a license to operate and 12 stations, 58.3% were sued for not having a license to operate and are therefore in full commercial activity, 83% of jobs have some practice environmentally responsible, 75% agree in making planning future action to implement 8 the EMS in their ventures, 70% in full agreement that the high cost is a form of impediment to implementation of EMS; 66.67% agreed that resistance to change is an impediment to implementation of EMS; 90.91% agreed that the implementation of EMS is very complex, 80% of respondents agreed in a very significant environmental legislation is also a key factor preventing the implementation of EMS is noteworthy that 100% of respondents agreed that the knowledge about the use of the EMS will help to solve environmental problems in the fuel retail service stations, the implementation of the EMS will benefit with increased efficiency of resources applied to the findings by the agreement of 91.66% of respondents, where only 8, 33% disagreed, there was also a percentage of 100%, agreed that the company's image will be a great benefit, but also a contribution to solving environmental problems in the fuel retail service stations. Thus, the importance of the implementation of EMS in the fuel retail service stations in the city of Parnamirim-RN, with an urgent need to be deployed. And the bodies responsible for policy on state-run and supervise more tightly and action, this type of activity, in order to regulate the sustainable functioning of retail service stations of fuel, thus promoting a better quality of life for the population of the municipality of natal-RN
Resumo:
The development of new fuels is an important field of scientific and technological activities, since much of the energy consumed in the world is obtained from oil, coal and natural gas, and these sources are limited and not renewable. Recently it has assessed the employment of microemulsions as an alternative for obtaining fuel isotropic between phases originally not miscible. Among many advantages, emphasizes the application of substances that provide the reduction of levels of emissions compared to fossil fuels. Thus, this work was a study of various microemulsified systems, aiming to check the performance of the winsor regions front of the use of surfactants: RENEX 18 → 150, UNITOL L-60 → L-100 and AMIDA 60, together with structure of esters from soybean and castor bean oils. From the results it were chosen four systems to physico-chemical analyzes: System I RENEX 60, Soil bean oil, methylic ester (EMOS) and water; System II RENEX 60/AMIDA 60, EMOS and water; System III RENEX 70, mamona oil methylic ester (EMOM) and water and System IV RENEX 95, EMOM and water. The tests of physico-chemical characterization and study of temperature increase were done with nine points with different compositions in a way to include the interest area (microemulsion W/O). After this study, was conducted a modeling to predict the viscosity, the property is more varied as function of compositions systems changes. The best results were the systems II and IV with a temperature stability above 60°C. The system I had its physico-chemical characterization very similar to a fossil fuel. The system II was the best one due to its corrosivity be stable. In the modeling the four systems had shown good, with an error that varied between 5 and 18%, showing to be possible the viscosity prediction from the composition of the system. The effects the microemulsion and the engine´s performance with the microemulsion were also avaliated. The tests were performed in a cycle-diesel engine. The potency and consumption were analysed. Results show a slight increase the rendiment fuel compared with the conventional as well as a decrease in specific consumption
Resumo:
Global warming due to Greenhouse Gases (GHG) emissions, especially CO2, has been identified as one of the major problems of the twenty-first century, considering the consequences that could represent to planet. Currently, biological processes have been mentioned as a possible solution, especially CO2 biofixation due to association microalgae growth. This strategy has been emphasized as in addition to CO2 mitigation, occurs the production of biomass rich in compounds of high added value. The Microalgae show high photosynthetic capacity and growth rate higher than the superior plants, doubling its biomass in one day. Its culture does not show seasons, they grow in salt water and do not require irrigation, herbicides or pesticides. The lipid content of these microorganisms, depending on the species, may range from 10 to 70% of its dry weight, reaching 90% under certain culture conditions. Studies indicate that the most effective method to promote increased production of lipids in microalgae is to induce stress by limiting nitrogen content in the culture medium. These evidences justify research continuing the production of biofuels from microalgae. In this paper, it was studied the strategy of increasing the production of lipids in microalgae I. galbana with programmed nutritional stress, due to nitrogen limitation. The physiological responses of microalgae, grown in f / 2 with different concentrations of nitrogen (N: P 15,0-control, N: 5,0 P and N: P 2,5) were monitored. During exponential phase, results showed invariability in the studied conditions. However the cultures subjected to stress in stationary phase, showed lower biomass yields. There was an increase of 32,5% in carbohydrate content and 87.68% in lipids content at N: P ratio of 5,0 and an average decrease of 65% in protein content at N: P ratios of 5, 0 and 2.5. There were no significant variations in ash content, independently of cultivation and growth phase. Despite the limitation of biomass production in cultures with N: P smaller ratios, the increase of lipid accumulation highest lipids yields were observed as compared to the control culture. Given the increased concentration of lipids associated to stress, this study suggests the use of microalgae Isochrysis galbana as an alternative raw material for biofuel production
Resumo:
The objective of this study was to produce biofuels (bio-oil and gas) from the thermal treatment of sewage sludge in rotating cylinder, aiming industrial applications. The biomass was characterized by immediate and instrumental analysis (elemental analysis, scanning electron microscopy - SEM, X-ray diffraction, infrared spectroscopy and ICP-OES). A kinetic study on non-stationary regime was done to calculate the activation energy by Thermal Gravimetric Analysis evaluating thermochemical and thermocatalytic process of sludge, the latter being in the presence of USY zeolite. As expected, the activation energy evaluated by the mathematical model "Model-free kinetics" applying techniques isoconversionais was lowest for the catalytic tests (57.9 to 108.9 kJ/mol in the range of biomass conversion of 40 to 80%). The pyrolytic plant at a laboratory scale reactor consists of a rotating cylinder whose length is 100 cm with capable of processing up to 1 kg biomass/h. In the process of pyrolysis thermochemical were studied following parameters: temperature of reaction (500 to 600 ° C), flow rate of carrier gas (50 to 200 mL/min), frequency of rotation of centrifugation for condensation of bio-oil (20 to 30 Hz) and flow of biomass (4 and 22 g/min). Products obtained during the process (pyrolytic liquid, coal and gas) were characterized by classical and instrumental analytical techniques. The maximum yield of liquid pyrolytic was approximately 10.5% obtained in the conditions of temperature of 500 °C, centrifugation speed of 20 Hz, an inert gas flow of 200 mL/min and feeding of biomass 22 g/min. The highest yield obtained for the gas phase was 23.3% for the temperature of 600 °C, flow rate of 200 mL/min inert, frequency of rotation of the column of vapor condensation 30 Hz and flow of biomass of 22 g/min. The non-oxygenated aliphatic hydrocarbons were found in greater proportion in the bio-oil (55%) followed by aliphatic oxygenated (27%). The bio-oil had the following characteristics: pH 6.81, density between 1.05 and 1.09 g/mL, viscosity between 2.5 and 3.1 cSt and highest heating value between 16.91 and 17.85 MJ/ kg. The main components in the gas phase were: H2, CO, CO2 and CH4. Hydrogen was the main constituent of the gas mixture, with a yield of about 46.2% for a temperature of 600 ° C. Among the hydrocarbons formed, methane was found in higher yield (16.6%) for the temperature 520 oC. The solid phase obtained showed a high ash content (70%) due to the abundant presence of metals in coal, in particular iron, which was also present in bio-oil with a rate of 0.068% in the test performed at a temperature of 500 oC.
Resumo:
The catalytic cracking of triglycerides presents itself as a possible alternative to the production of biofuels with low emission of pollutants. In this work were synthesized the SAPO-5, the catalysts for the cracking reaction of soybean oil is presented. The solids were powder X-ray diffraction (XRD), thermogravimetric analysis (TG/DTG) and infrared spectroscopy (FTIR). The analyses indicated that the synthesis method has employed to obtain materials with high surface area and high acid. The soybean oil thermal and thermal catalytic cracking, realized from the room temperature to 450 ºC in a simple distillation system, has allowed obtaining two liquid fractions, each consisting of two phases, one aqueous and another organic, organic liquid (OL). The OL obtained from first fractions has shown high acid index, even in the thermal catalytic process. The products obtained in the cracking of soybean oil were analyzed by distillation, acid number, infra-red spectroscopy, density, viscosity, carbon residue, cetane number determination and characterization. The analysis of the products obtained in the presence and in the absence of the SAPO-5 permitted to conclude that all the solids tested presented catalytic activity in the deoxygenation of final products only at the second step of the cracking process
Resumo:
Most of the energy consumed worldwide comes from oil, coal and natural gas. These sources are limited and estimated to be exhausted in the future, therefore, the search for alternative sources of energy is paramount. Currently, there is considerable interest in making trade sustainable biodiesel, a fuel alternative to fossil fuels, due to its renewable nature and environmental benefits of its use in large scale. This trend has led the Brazilian government to establish a program (Probiodiesel) with the aim of introducing biodiesel into the national energy matrix, by addition of 5% biodiesel to conventional diesel in 2010 to foster not only the increase of renewable energy, but reduce imports of crude oil. This work evaluates different methods of extraction of oil Carthamus tinctorius L., their characterization by IR, 1H and 13C NMR, HPLC and TG and their use in the production of methyl ester (molar ratio of oil / alcohol 1:6, and NaOH catalyst). The physico-chemical parameters (acid value, density, viscosity, saponification index and surface tension) of oil and biodiesel were also described. The produced biodiesel had a yield of 93.65%, was characterized in relation to their physicochemical properties showing satisfactory results (density=875 kg/m3, viscosity = 6.22 mm2/s, AI = 0.01 mg (NaOH) /g) compared with the values established by the the National Agency Oil, Natural Gas and Biofuels
Resumo:
Biodiesel is a fuel made up by mono-alkyl-esters of long chain fatty acids, derived from vegetable oils or animal fat. This fuel can be used in compression ignition engines for automotive propulsion or energy generation, as a partial or total substitute of fossil diesel fuel. Biodiesel can be processed from different mechanisms. Transesterification is the most common process for obtaining biodiesel, in which an ester compound reacts with an alcohol to form a new ester and a new alcohol. These reactions are normally catalyzed by the addition of an acid or a base. Initially sunflower, castor and soybean oil physicochemical properties are determined according to standard test methods, to evaluate if they had favorable conditions for use as raw material in the transesterification reaction. Sunflower, castor and soybean biodiesel were obtained by the methylic transesterification route in the presence of KOH and presented a yield above 93% m/m. The sunflower/castor and soybean/castor blends were studied with the aim of evaluating the thermal and oxidative stability of the biofuels. The biodiesel and blends were characterized by acid value, iodine value, density, flash point, sulfur content, and content of methanol and esters by gas chromatography (GC). Also studies of thermal and oxidative stability by Thermogravimetry (TG), Differential Scanning Calorimetry High Pressure (P-DSC) and dynamic method exothermic and Rancimat were carried out. Biodiesel sunflower and soybean are presented according to the specifications established by the Resolution ANP no 7/2008. Biodiesel from castor oil, as expected, showed a high density and kinematic viscosity. For the blends studied, the concentration of castor biodiesel to increased the density, kinematic viscosity and flash point. The addition of castor biodiesel as antioxidant in sunflower and soybean biodiesels is promising, for a significant improvement in resistance to autoxidation and therefore on its oxidative stability. The blends showed that compliance with the requirements of the ANP have been included in the range of 20-40%. This form may be used as a partial substitute of fossil diesel
Resumo:
The current environmental crisis demands transformations in the relations among society, nature and development, considering sustainability. In this context, an important theme is replacing fossil fuels with biofuels, such as biodiesel. Moringa oleifera Lam. is a species that can be used as a raw material to produce biodiesel. Besides, it is a multiple purposes plant, which can be used also in water treatment. Thus, the aims of this work were to analyze the anatomical adaptations found in the stem and in the leaf and the seed s oil stores of M. oleifera., to investigate chemical characteristics of M. oleifera s seed oil, considering biodiesel production, and to evaluate the coagulation activity of these seeds in water treatment. Semipermanent histological laminas were made and it follows that the stem has thick cuticle, stomata whose cells guard are below the epidermis line, hollow medulla, druses and tector trichomes as adaptations to climate and soil conditions in which the species is found and the leaf is dorsiventral and it has thick cuticle, tector trichomes and druses. The seed has great reserves of oil. These features favor the use of Moringa oleifera Lam. as a raw material to produce biodiesel in Brazil s Northeast semiarid region. Chemical analysis were made through oil solvent extraction using mechanic stirrer. The oil was analyzed in UV spectrophotometer. A transesterification was made and biodiesel was analyzed in gas chromatography. Oil yield was high and good quality biodiesel was obtained. To evaluate seeds coagulantion activity, coagulation and flocculation essays in jartest were made, using seed extract to treat raw water. Seeds were efficient in cogulation process to treat water. So, they can be used in rudimentary systems or as a raw material to coagulant proteins extraction, as an alternative to traditional coagulants. M. oleifera has characteristics that favor its use to biodiesel production and water treatment
Resumo:
In February 2011, the National Agency of Petroleum, Natural Gas and Biofuels (ANP) has published a new Technical Rules for Handling Land Pipeline Petroleum and Natural Gas Derivatives (RTDT). Among other things, the RTDT made compulsory the use of monitoring systems and leak detection in all onshore pipelines in the country. This document provides a study on the method for detection of transient pressure. The study was conducted on a industrial duct 16" diameter and 9.8 km long. The pipeline is fully pressurized and carries a multiphase mixture of crude oil, water and natural gas. For the study, was built an infrastructure for data acquisition and validation of detection algorithms. The system was designed with SCADA architecture. Piezoresistive sensors were installed at the ends of the duct and Digital Signal Processors (DSPs) were used for sampling, storage and processing of data. The study was based on simulations of leaks through valves and search for patterns that characterize the occurrence of such phenomena
Resumo:
The mesoporous materials has been an special attention, among them was discovered in the 1990´s the mesoporous molecular sieve of SBA-15 type. The good features of the SBA- 15 makes this material very promising in catalysis, however, due to the absence of native active sites, it has low catalytic activity. In this way, different metals and oxides have been included in this molecular sieve as a means of introducing active sites and increase its catalytic activity. Among the oxides that are being researched, there is the niobium oxide, which presents strong acid sites and exists in abundance. Brazil is the largest producer of the mineral. On the other hand, the production of biofuels has been desired, but it requires the development of new catalysts for this purpose. The aim of this work was to develop silicate of niobium by impregnation and by new synthesis method for application in the cracking of moringa oil. The methodology consisted of inserting the niobium oxide either by postsynthesis process using wet impregnation and direct insertion. For direct insert a new method was developed for pH adjustment, being tested different pH, and the pH 2.2 was used different ratios of Si/Nb. The materials were characterized by different techniques such as: XRD, N2 adsorption, SEM, EDS, UV-visible, TG/DTG, DSC, TEM, acidity by thermodesorption of n-butilamine and FTIR. After this part of the catalysts developed by the two methods were tested in the thermocatalytic cracking of moringa oil, being used a simple distillation. All silicates of Niobium obtained showed a highly ordered structure, having high specific areas, good distribution of pore diameters, beyond present a morphology in the form of fibers. In the catalysts after synthesis was observed that the niobium inserted has so as octahedrally and tetrahedrally coordinated, demonstrating that there were also oxides formed on the external surface of SBA-15. The materials obtained in the direct synthesis are only tetrahedrally coordinated. The new synthesis method of pH adjusting by using the buffer solution for it, proved to be very efficient for the production of such materials, because the materials obtained showed characteristics and structures similar to the molecular sieve of SBA-15 type. Among the pH tested the material that presented better characteristics was synthesized at pH 2.2. The application of these materials in catalytic cracking showed a higher formation of organic liquids when compared to thermal cracking, in addition to significantly reducing the acidity and residues formed, demonstrating that the use of silicates of Niobium increases both the conversion and the selectivity of the products.