30 resultados para Solid oxide fuel cell


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The direct use of natural gas makes the Solid Oxide Fuel Cell (SOFC) potentially more competitive with the current energy conversions technologies. The Intermediate Temperature SOFC (IT-SOFC) offer several advantages over the High Temperature SOFC (HT-SOFC), which includes better thermal compatibility among components, fast start with lower energy consumption, manufacture and operation cost reduction. The CeO2 based materials are alternatives to the Yttria Stabilized Zirconia (YSZ) to application in SOFC, as they have higher ionic conductivity and less ohmic losses comparing to YSZ, and they can operate at lower temperatures (500-800°C). Ceria has been doped with a variety of cations, although, the Gd3+ has the ionic radius closest to the ideal one to form solid solution. These electrolytes based in ceria require special electrodes with a higher performance and chemical and termomechanical compatibility. In this work compounds of gadolinia-doped ceria, Ce1-xGdxO2-δ (x = 0,1; 0,2 and 0,3), used as electrolytes, were synthesized by polymeric precursors method, Pechini, as well as the composite material NiO - Ce0,9Gd0,1O1,95, used as anode, also attained by oxide mixture method, mixturing the powders of the both phases calcinated already. The materials were characterized by X ray diffraction, dilatometry and scanning electronic microscopy. The refinement of the diffraction data indicated that all the Ce1-xGdxO2-δ powders were crystallized in a unique cubic phase with fluorite structure, and the composite synthesized by Pechini method produced smaller crystallite size in comparison with the same material attained by oxide mixture method. All the produced powders had nanometric characteristics. The composite produced by Pechini method has microstructural characteristics that can increase the triple phase boundaries (TPB) in the anode, improving the cell efficiency, as well as reducing the mass transport mechanism effect that provokes anode degradation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cells unitaria of the solid oxide fuel cell are separated by means of interconnects, which serve as electrical contact between the cells. Lanthanum Chromite (LaCrO3) has been the most common material used as interconnect in solid oxide fuel cells. Reducing the operating temperature around 800 º C of cells to solid oxide fuel make possibilite the use of metallic interconnects as an alternative to ceramic LaCrO3. Metallic interconnects have advantages over ceramic interconnects such as high thermal conductivity, electricity, good ductility, low cost, good physical and mechanical properties. In this work evaluate the thermo-mechanical properties of the metallic substrate and coated metallic substrate with the ceramic LaCrO3 film via spray-pyrolysis, in order to demonstrate the feasibility of using this material as a component of a fuel cell solid oxide. The materials were characterized by X-ray diffraction, oxidation behavior, mechanical strength, optical microscopy (OM) and scanning electron microscopy (SEM). The X-ray diffraction proved the formation phase of the LaCrO3 on the metallic substrate and the identification of the phases formed after the oxidative test and mechanical strength at high temperature. The oxidation behavior showed the increased oxidation resistance of the coated metallic substrate. It was noted that the mechanical resistance to bending of the coated metallic substrate only increases at room temperature. The optical microscopy (OM) has provided an assessment of both the metallic substrate and the LaCrO3 film deposited on the metal substrate that, in comparison with the micrographs obtained from SEM. The SEM one proved the formation of Cr2O3 layer on the metallic substrate and stability of LaCrO3 film after oxidative test, it can also observe the displacement of the ceramic LaCrO3 film after of mechanical testing and mapping of the main elements as chromium, manganese, oxygen, lanthanum in samples after the thermo-mechanical tests.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Given the environmental concern over global warming that occurs mainly by emission of CO2 from the combustion of petroleum, coal and natural gas research focused on alternative and clean energy generation has been intensified. Among these, the highlight the solid oxide fuel cell intermediate temperature (IT-SOFC). For application as electrolyte of the devices doped based CeO2 with rare earth ions (TR+ 3) have been quite promising because they have good ionic conductivity and operate at relatively low temperatures (500-800 ° C). In this work, studied the Ce1-xEuxO2-δ (x = 0,1, 0,2 and 0,3), solid solutions synthesized by the polymeric precursor method to be used as solid electrolyte. It was also studied the processing steps of these powders (milling, compaction and two step sintering) in order to obtain dense sintered pellets with reduced grain size and homogeneous microstructure. For this, the powders were characterized by thermal analysis, X-ray diffraction, particle size distribution and scanning electrons microscopy, since the sintered samples were characterized by dilatometry, scanning electrons microscopy, density and grain size measurements. By x-ray diffraction, it was verified the formation of the solid solution for all compositions. Crystallites in the nanometric scale were found for both sintering routes but the two step sintering presented significant reduction in the average grain size

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cells the solid oxide fuel are systems capable to directly convert energy of a chemical reaction into electric energy in clean, quiet way and if its components in the solid state differentiate of excessively the techniques for having all. Its more common geometric configurations are: the tubular one and to glide. Geometry to glide beyond the usual components (anode, cathode and electrolyte) needs interconnect and sealant. E the search for materials adjusted for these components is currently the biggest challenge found for the production of the cells. The sealants need to present chemical stability in high temperatures, to provoke electric isolation, to have coefficient of compatible thermal expansion with the excessively component ones. For presenting these characteristics the glass-ceramics materials are recommended for the application. In this work the study of the partial substitution of the ZrO2 for the Al2O3 in system LZS became it aiming at the formation of system LZAS, this with the addition of natural spodumene with 10, 20 and 30% in mass. The compositions had been casting to a temperature of 1500°C and later quickly cooled with the objective to continue amorphous. Each composition was worn out for attainment of a dust with average diameter of approximately 3μm and characterized by the techniques of DRX, FRX, MEV, dilatometric analysis and particle size analysis. Later the samples had been conformed and treated thermally with temperatures in the interval between 700-1000 °C, with platform of 10 minutes and 1 hour. The analyses for the treated samples had been: dilatometric analysis, DRX, FRX, electrical conductivity and tack. The results point with respect to the viability of the use of system LZAS for use as sealant a time that had presented good results as isolating electric, they had adhered to a material with similar α of the components of a SOFC and had presented steady crystalline phases

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fuel cells are electrochemical devices that convert chemical energy into electricity. Due to the development of new materials, fuel cells are emerging as generating clean energy generator. Among the types of fuel cells, categorized according to the electrode type, the solid oxide fuel cells (SOFC) stand out due to be the only device entirely made of solid particles. Beyond that, their operation temperature is relatively high (between 500 and 1000 °C), allowing them to operate with high efficiency. Another aspect that promotes the use of SOFC over other cells is their ability to operate with different fuels. The CeO2 based materials doped with rare earth (TR+3) may be used as alternatives to traditional NiO-YSZ anodes as they have higher ionic conductivity and smaller ohmic losses compared to YSZ, and can operate at lower temperatures (500-800°C). In the composition of the anode, the concentration of NiO, acting as a catalyst in YSZ provides high electrical conductivity and high electrochemical activity of reactions, providing internal reform in the cell. In this work compounds of NiO - Ce1-xEuxO2-δ (x = 0.1, 0.2 and 0.3) were synthesized from polymeric precursor, Pechini, method of combustion and also by microwave-assisted hydrothermal method. The materials were characterized by the techniques of TG, TPR, XRD and FEG-SEM. The refinement of data obtained by X-ray diffraction showed that all powders of NiO - Cex-1EuxO2-δ crystallized in a cubic phase with fluorite structure, and also the presence of Ni. Through the characterizations can be proved that all routes of preparation used were effective for producing ceramics with characteristics suitable for application as SOFC anodes, but the microwave-assisted hydrothermal method showed a significant reduction in the average grain size and improved control of the compositions of the phases

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alternative and clean energy generation research has been intensified in last decades. Among the alternatives, fuel cells are one of the most important. There are different types of fuel cells, among which stands out intermediate temperature solid oxide fuel cell (IT-SOFC) matter of the present work. For application as cathode on this type of devices, the ceramic Ba0.5Sr0.5C0.8Fe0.2O3-δ doped with rare earth ions (Nd, Sm) have been quite promising because they show good ionic conductivity and operate at relatively low temperatures (500 - 800°C). In this work, Ba0.5Sr0.5Co0.8Fe0.2O3-δ, (BaSr)0.5Sm0.5Co0.8Fe0.2O3-δ and (BaSr)0.5Nd0.5C0.8Fe0.2O3-δ were obtained by modified Pechini method, making use of gelatin as polymerizing agent. The powders were characterized by X-Ray Diffraction (XRD), Temperature Programmed Reduction (TPR) and Scanning Electron Microscopy (SEM). The perovskite phase was observed in all X-ray patterns for the materials Ba0.5Sr0.5C0.8Fe0.2O3-δ doped with rare earth ions (Nd, Sm). The SEM images showed that the materials have a characteristics porous, with very uniform pore distribution, which are favorable for application as cathodes. Subsequently, screen-printed assymmetrical cells were studied by impedance spectroscopy, to assess the kinetics of the cathode for the reduction reaction of oxygen. The best resistance to the specific area was found for the cathode BSSCF sintered at 1050 °C for 4 hours with around 0.15 Ω.cm2 at 750 °C as well as cathodes BSNCF and BSCF obtained resistances specific area of 0.2 and 0.73 Ω.cm2, respectively, for the same conditions. The polarization curves showed similar behavior to the best cathodes BSSCF and BSNCF, such combination of properties indicates that the film potentially depict good performance as IT-SOFC cathodes

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fuel cells are electrochemical devices that convert chemical energy in electrical energy by a reaction directly. The solid oxide fuel cell (SOFC) works in temperature between 900ºC up to 1000ºC, Nowadays the most material for ceramic electrolytes is yttria stabilized zirconium. However, the high operation temperature can produce problems as instability and incompatibility of materials, thermal degradation and high cost of the surround materials. These problems can be reduced with the development of intermediate temperature solid oxide fuel cell (IT-SOFC) that works at temperature range of 600ºC to 800ºC. Ceria doped gadolinium is one of the most promising materials for electrolytes IT-SOFC due high ionic conductivity and good compatibility with electrodes. The inhibition of grain growth has been investigated during the sintering to improve properties of electrolytes. Two-step sintering (TSS) is an interesting technical to inhibit this grain growth and consist at submit the sample at two stages of temperature. The first one stage aims to achieve the critical density in the initiating the sintering process, then the sample is submitted at the second stage where the temperature sufficient to continue the sintering without accelerate grain growth until to reach total densification. The goal of this work is to produce electrolytes of ceria doped gadolinium by two-step sintering. In this context were produced samples from micrometric and nanometric powders by two routes of two-step sintering. The samples were obtained with elevate relative density, higher than 90% using low energy that some works at the same area. The average grain size are at the range 0,37 μm up to 0,51 μm. The overall ionic conductivity is 1,8x10-2 S.cm and the activation energy is 0,76 eV. Results shown that is possible to obtain ceria-doped gadolinium samples by two-step sintering technique using modified routes with characteristics and properties necessary to apply as electrolytes of solid oxide fuel cell

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The lanthanum strontium cobalt iron oxide (La1-xSrxCo1-yFeyO3 LSCF) is the most commonly used material for application as cathode in Solid Oxide Fuel Cells (SOFCs), mainly due to their high mixed ionic electronic conductivity between 600 and 800ºC. In this study, LSCF powders with different compositions were synthesized via a combination between citrate and hydrothermal methods. As-prepared powders were calcined from 700 to 900°C and then characterized by X-ray fluorescence, X-ray diffraction, thermal analyses, particle size analyses, nitrogen adsorption (BET) and scanning electronic microscopy. Films of composition La0,6Sr0,4Co0,2Fe0,8O3 (LSCF6428), powders calcined at 900°C, were screen-printed on gadolinium doped ceria (CGO) substrates and sintered between 1150 and 1200°C. The effects of level of sintering on the microstructure and electrochemical performance of electrodes were evaluated by scanning electronic microscopy and impedance spectroscopy. Area specific resistance (ASR) exhibited strong relation with the microstructure of the electrodes. The best electrochemical performance (0.18 ohm.cm2 at 800°C) was obtained for the cathode sintered at 1200°C for 2 h. The electrochemical activity can be further improved through surface activation by impregnation with PrOx, in this case the electrode area specific resistance decreases to values as low as 0.12 ohm.cm2 (800°C), 0.17 ohm.cm2 (750°C) and 0.31 ohm.cm2 (700°C). The results indicate that the citrate-hydrothermal method is suitable for the attainment of LSCF particulates with potential application as cathode component in intermediate temperature solid oxide fuel cells (IT-SOFCs)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The direct use of natural gas makes the Solid Oxide Fuel Cell (SOFC) potentially more competitive with the current energy conversions technologies. The Intermediate Temperature SOFC (IT-SOFC) offer several advantages over the High Temperature SOFC (HT-SOFC), which includes better thermal compatibility among components, fast start with lower energy consumption, manufacture and operation cost reduction. The CeO2 based materials are alternatives to the Yttria Stabilized Zirconia (YSZ) to application in SOFC, as they have higher ionic conductivity and less ohmic losses comparing to YSZ, and they can operate at lower temperatures (500-800°C). Ceria has been doped with a variety of cations, although, the Gd3+ has the ionic radius closest to the ideal one to form solid solution. These electrolytes based in ceria require special electrodes with a higher performance and chemical and termomechanical compatibility. In this work compounds of gadolinia-doped ceria, Ce1-xGdxO2-δ (x = 0,1; 0,2 and 0,3), used as electrolytes, were synthesized by polymeric precursors method, Pechini, as well as the composite material NiO - Ce0,9Gd0,1O1,95, used as anode, also attained by oxide mixture method, mixturing the powders of the both phases calcinated already. The materials were characterized by X ray diffraction, dilatometry and scanning electronic microscopy. The refinement of the diffraction data indicated that all the Ce1-xGdxO2-δ powders were crystallized in a unique cubic phase with fluorite structure, and the composite synthesized by Pechini method produced smaller crystallite size in comparison with the same material attained by oxide mixture method. All the produced powders had nanometric characteristics. The composite produced by Pechini method has microstructural characteristics that can increase the triple phase boundaries (TPB) in the anode, improving the cell efficiency, as well as reducing the mass transport mechanism effect that provokes anode degradation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cells unitaria of the solid oxide fuel cell are separated by means of interconnects, which serve as electrical contact between the cells. Lanthanum Chromite (LaCrO3) has been the most common material used as interconnect in solid oxide fuel cells. Reducing the operating temperature around 800 º C of cells to solid oxide fuel make possibilite the use of metallic interconnects as an alternative to ceramic LaCrO3. Metallic interconnects have advantages over ceramic interconnects such as high thermal conductivity, electricity, good ductility, low cost, good physical and mechanical properties. In this work evaluate the thermo-mechanical properties of the metallic substrate and coated metallic substrate with the ceramic LaCrO3 film via spray-pyrolysis, in order to demonstrate the feasibility of using this material as a component of a fuel cell solid oxide. The materials were characterized by X-ray diffraction, oxidation behavior, mechanical strength, optical microscopy (OM) and scanning electron microscopy (SEM). The X-ray diffraction proved the formation phase of the LaCrO3 on the metallic substrate and the identification of the phases formed after the oxidative test and mechanical strength at high temperature. The oxidation behavior showed the increased oxidation resistance of the coated metallic substrate. It was noted that the mechanical resistance to bending of the coated metallic substrate only increases at room temperature. The optical microscopy (OM) has provided an assessment of both the metallic substrate and the LaCrO3 film deposited on the metal substrate that, in comparison with the micrographs obtained from SEM. The SEM one proved the formation of Cr2O3 layer on the metallic substrate and stability of LaCrO3 film after oxidative test, it can also observe the displacement of the ceramic LaCrO3 film after of mechanical testing and mapping of the main elements as chromium, manganese, oxygen, lanthanum in samples after the thermo-mechanical tests.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Given the environmental concern over global warming that occurs mainly by emission of CO2 from the combustion of petroleum, coal and natural gas research focused on alternative and clean energy generation has been intensified. Among these, the highlight the solid oxide fuel cell intermediate temperature (IT-SOFC). For application as electrolyte of the devices doped based CeO2 with rare earth ions (TR+ 3) have been quite promising because they have good ionic conductivity and operate at relatively low temperatures (500-800 ° C). In this work, studied the Ce1-xEuxO2-δ (x = 0,1, 0,2 and 0,3), solid solutions synthesized by the polymeric precursor method to be used as solid electrolyte. It was also studied the processing steps of these powders (milling, compaction and two step sintering) in order to obtain dense sintered pellets with reduced grain size and homogeneous microstructure. For this, the powders were characterized by thermal analysis, X-ray diffraction, particle size distribution and scanning electrons microscopy, since the sintered samples were characterized by dilatometry, scanning electrons microscopy, density and grain size measurements. By x-ray diffraction, it was verified the formation of the solid solution for all compositions. Crystallites in the nanometric scale were found for both sintering routes but the two step sintering presented significant reduction in the average grain size

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cells the solid oxide fuel are systems capable to directly convert energy of a chemical reaction into electric energy in clean, quiet way and if its components in the solid state differentiate of excessively the techniques for having all. Its more common geometric configurations are: the tubular one and to glide. Geometry to glide beyond the usual components (anode, cathode and electrolyte) needs interconnect and sealant. E the search for materials adjusted for these components is currently the biggest challenge found for the production of the cells. The sealants need to present chemical stability in high temperatures, to provoke electric isolation, to have coefficient of compatible thermal expansion with the excessively component ones. For presenting these characteristics the glass-ceramics materials are recommended for the application. In this work the study of the partial substitution of the ZrO2 for the Al2O3 in system LZS became it aiming at the formation of system LZAS, this with the addition of natural spodumene with 10, 20 and 30% in mass. The compositions had been casting to a temperature of 1500°C and later quickly cooled with the objective to continue amorphous. Each composition was worn out for attainment of a dust with average diameter of approximately 3μm and characterized by the techniques of DRX, FRX, MEV, dilatometric analysis and particle size analysis. Later the samples had been conformed and treated thermally with temperatures in the interval between 700-1000 °C, with platform of 10 minutes and 1 hour. The analyses for the treated samples had been: dilatometric analysis, DRX, FRX, electrical conductivity and tack. The results point with respect to the viability of the use of system LZAS for use as sealant a time that had presented good results as isolating electric, they had adhered to a material with similar α of the components of a SOFC and had presented steady crystalline phases

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fuel cells are electrochemical devices that convert chemical energy into electricity. Due to the development of new materials, fuel cells are emerging as generating clean energy generator. Among the types of fuel cells, categorized according to the electrode type, the solid oxide fuel cells (SOFC) stand out due to be the only device entirely made of solid particles. Beyond that, their operation temperature is relatively high (between 500 and 1000 °C), allowing them to operate with high efficiency. Another aspect that promotes the use of SOFC over other cells is their ability to operate with different fuels. The CeO2 based materials doped with rare earth (TR+3) may be used as alternatives to traditional NiO-YSZ anodes as they have higher ionic conductivity and smaller ohmic losses compared to YSZ, and can operate at lower temperatures (500-800°C). In the composition of the anode, the concentration of NiO, acting as a catalyst in YSZ provides high electrical conductivity and high electrochemical activity of reactions, providing internal reform in the cell. In this work compounds of NiO - Ce1-xEuxO2-δ (x = 0.1, 0.2 and 0.3) were synthesized from polymeric precursor, Pechini, method of combustion and also by microwave-assisted hydrothermal method. The materials were characterized by the techniques of TG, TPR, XRD and FEG-SEM. The refinement of data obtained by X-ray diffraction showed that all powders of NiO - Cex-1EuxO2-δ crystallized in a cubic phase with fluorite structure, and also the presence of Ni. Through the characterizations can be proved that all routes of preparation used were effective for producing ceramics with characteristics suitable for application as SOFC anodes, but the microwave-assisted hydrothermal method showed a significant reduction in the average grain size and improved control of the compositions of the phases

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alternative and clean energy generation research has been intensified in last decades. Among the alternatives, fuel cells are one of the most important. There are different types of fuel cells, among which stands out intermediate temperature solid oxide fuel cell (IT-SOFC) matter of the present work. For application as cathode on this type of devices, the ceramic Ba0.5Sr0.5C0.8Fe0.2O3-δ doped with rare earth ions (Nd, Sm) have been quite promising because they show good ionic conductivity and operate at relatively low temperatures (500 - 800°C). In this work, Ba0.5Sr0.5Co0.8Fe0.2O3-δ, (BaSr)0.5Sm0.5Co0.8Fe0.2O3-δ and (BaSr)0.5Nd0.5C0.8Fe0.2O3-δ were obtained by modified Pechini method, making use of gelatin as polymerizing agent. The powders were characterized by X-Ray Diffraction (XRD), Temperature Programmed Reduction (TPR) and Scanning Electron Microscopy (SEM). The perovskite phase was observed in all X-ray patterns for the materials Ba0.5Sr0.5C0.8Fe0.2O3-δ doped with rare earth ions (Nd, Sm). The SEM images showed that the materials have a characteristics porous, with very uniform pore distribution, which are favorable for application as cathodes. Subsequently, screen-printed assymmetrical cells were studied by impedance spectroscopy, to assess the kinetics of the cathode for the reduction reaction of oxygen. The best resistance to the specific area was found for the cathode BSSCF sintered at 1050 °C for 4 hours with around 0.15 Ω.cm2 at 750 °C as well as cathodes BSNCF and BSCF obtained resistances specific area of 0.2 and 0.73 Ω.cm2, respectively, for the same conditions. The polarization curves showed similar behavior to the best cathodes BSSCF and BSNCF, such combination of properties indicates that the film potentially depict good performance as IT-SOFC cathodes

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fuel cells are electrochemical devices that convert chemical energy in electrical energy by a reaction directly. The solid oxide fuel cell (SOFC) works in temperature between 900ºC up to 1000ºC, Nowadays the most material for ceramic electrolytes is yttria stabilized zirconium. However, the high operation temperature can produce problems as instability and incompatibility of materials, thermal degradation and high cost of the surround materials. These problems can be reduced with the development of intermediate temperature solid oxide fuel cell (IT-SOFC) that works at temperature range of 600ºC to 800ºC. Ceria doped gadolinium is one of the most promising materials for electrolytes IT-SOFC due high ionic conductivity and good compatibility with electrodes. The inhibition of grain growth has been investigated during the sintering to improve properties of electrolytes. Two-step sintering (TSS) is an interesting technical to inhibit this grain growth and consist at submit the sample at two stages of temperature. The first one stage aims to achieve the critical density in the initiating the sintering process, then the sample is submitted at the second stage where the temperature sufficient to continue the sintering without accelerate grain growth until to reach total densification. The goal of this work is to produce electrolytes of ceria doped gadolinium by two-step sintering. In this context were produced samples from micrometric and nanometric powders by two routes of two-step sintering. The samples were obtained with elevate relative density, higher than 90% using low energy that some works at the same area. The average grain size are at the range 0,37 μm up to 0,51 μm. The overall ionic conductivity is 1,8x10-2 S.cm and the activation energy is 0,76 eV. Results shown that is possible to obtain ceria-doped gadolinium samples by two-step sintering technique using modified routes with characteristics and properties necessary to apply as electrolytes of solid oxide fuel cell