96 resultados para Radiação sincrotronica
Desenvolvimento de bloco de vedação com barita na composição de partida para blindagem de radiação X
Resumo:
This work main objective is to study the use of bricks in barium X-rays rooms in order to contribute to the optimization of shielding rooms diagnosis. The work was based on experimental measurements of X-ray attenuation (40 to 150 kV), using ceramic seal bearing the incorporation of barium sulfat (BaSO4). Different formulations were studied in three different firing temperatures and evaluated for incorporation in the ceramic body. The composition of 20% of barite processed at a temperature of 950 ° C showed better physical and mechanical properties, is considered the most suitable for the purpose of this work. Were produced bricks sealing composition formulated based on that presented the best technological features. These blocks were tested physically as a building material and wall protective barrier. Properties such as visual, deviation from the square, face flatness, water absorption and compressive strength were evaluated for all the blocks produced. The behavior of this material as attenuator for X-rays was investigated by experimental results which take into account mortar manufacturers barium through the different strains and compared with the reference material (Pb). The simulation results indicated that the ceramic block barium shows excellent properties of attenuation equivalence lead taking into account the energy used in diagnostic X-ray
Resumo:
The increase in ultraviolet radiation (UV) at surface, the high incidence of non-melanoma skin cancer (NMSC) in coast of Northeast of Brazil (NEB) and reduction of total ozone were the motivation for the present study. The overall objective was to identify and understand the variability of UV or Index Ultraviolet Radiation (UV Index) in the capitals of the east coast of the NEB and adjust stochastic models to time series of UV index aiming make predictions (interpolations) and forecasts / projections (extrapolations) followed by trend analysis. The methodology consisted of applying multivariate analysis (principal component analysis and cluster analysis), Predictive Mean Matching method for filling gaps in the data, autoregressive distributed lag (ADL) and Mann-Kendal. The modeling via the ADL consisted of parameter estimation, diagnostics, residuals analysis and evaluation of the quality of the predictions and forecasts via mean squared error and Pearson correlation coefficient. The research results indicated that the annual variability of UV in the capital of Rio Grande do Norte (Natal) has a feature in the months of September and October that consisting of a stabilization / reduction of UV index because of the greater annual concentration total ozone. The increased amount of aerosol during this period contributes in lesser intensity for this event. The increased amount of aerosol during this period contributes in lesser intensity for this event. The application of cluster analysis on the east coast of the NEB showed that this event also occurs in the capitals of Paraiba (João Pessoa) and Pernambuco (Recife). Extreme events of UV in NEB were analyzed from the city of Natal and were associated with absence of cloud cover and levels below the annual average of total ozone and did not occurring in the entire region because of the uneven spatial distribution of these variables. The ADL (4, 1) model, adjusted with data of the UV index and total ozone to period 2001-2012 made a the projection / extrapolation for the next 30 years (2013-2043) indicating in end of that period an increase to the UV index of one unit (approximately), case total ozone maintain the downward trend observed in study period
Resumo:
Antenna arrays are able to provide high and controlled directivity, which are suitable for radiobase stations, radar systems, and point-to-point or satellite links. The optimization of an array design is usually a hard task because of the non-linear characteristic of multiobjective, requiring the application of numerical techniques, such as genetic algorithms. Therefore, in order to optimize the electronic control of the antenna array radiation pattem through genetic algorithms in real codification, it was developed a numerical tool which is able to positioning the array major lobe, reducing the side lobe levels, canceling interference signals in specific directions of arrival, and improving the antenna radiation performance. This was accomplished by using antenna theory concepts and optimization methods, mainly genetic algorithms ones, allowing to develop a numerical tool with creative genes codification and crossover rules, which is one of the most important contribution of this work. The efficiency of the developed genetic algorithm tool is tested and validated in several antenna and propagation applications. 11 was observed that the numerical results attend the specific requirements, showing the developed tool ability and capacity to handle the considered problems, as well as a great perspective for application in future works.
Resumo:
This study aims at the design, development and performance evaluation of a flat platform to capture incident solar radiation. The design and implementation of a fuzzy system for the efficient control of the solar tracking movement of the platform are also presented
Resumo:
There were studied the variation of the solar ultraviolet radiation (UVR) in four wavelengths (305 nm, 320 nm, 340 nm e 380 nm) and erythemic dose, measured in Natal RN Brazil, from January 2001 until December 2007, using the ground ultraviolet radiometer of the Instituto Nacional de Pesquisas Espaciais / Centro Regional do Nordeste INPE-CRN, fixed on the roof of the Laboratório de Variáveis Ambientais Tropiciais LAVAT-INPE-CRN. It was verified that the mean value of the UVR in the city reachs the HIGH index before 09h00 a.m. and VERY HIGH before 09h40 a.m.; it was also verified that, except in the months of June and July, in the other months of the year the UVR reachs the HIGH index before 10h00 a.m., despite of the recommendations broadcasting in the media about the safe time to people stay ashore on the beaches of the city. After 14h30 p.m., the UVR reachs the MODERATE index in any month of the year. These evidence are valid to all years of the period studied, i.e., 2001 to 2007. The year of 2004 presented the lower mean values of UVR indices, and the year of 2007 presented the higher mean values of UVR index. It was prove, by means of the analysis of variance (ANOVA), the variation in the four wavelengths and in the erythemic dose. Considering that the city has high indices of skin cancer and cataract, the results of the research may be use as a data source to studies that intend to support programs of public health. At the same time, the results of the research may be applied to material science and agriculture studies
Resumo:
The application of composite materials and in particular the fiber-reinforced plastics (FRP) has gradually conquered space from the so called conventional materials. However, challenges have arisen when their application occurs in equipment and mechanical structures which will be exposed to harsh environmental conditions, especially when there is the influence of environmental degradation due to temperature, UV radiation and moisture in the mechanical performance of these structures, causing irreversible structural damage such as loss of dimensional stability, interfacial degradation, loss of mass, loss of structural properties and changes in the damage mechanism. In this context, the objective of this thesis is the development of a process for monitoring and modeling structural degradation, and the study of the physical and mechanical properties in FRP when in the presence of adverse environmental conditions (ageing). The mechanism of ageing is characterized by controlled environmental conditions of heated steam and ultraviolet radiation. For the research, it was necessary to develop three polymer composites. The first was a lamina of polyester resin reinforced with a short glass-E fiber mat (representing the layer exposed to ageing), and the other two were laminates, both of seven layers of reinforcement, one being made up only of short fibers of glass-E, and the other a hybrid type reinforced with fibers of glass-E/ fibers of curaua. It should be noted that the two laminates have the lamina of short glass-E fibers as a layer of the ageing process incidence. The specimens were removed from the composites mentioned and submitted to environmental ageing accelerated by an ageing chamber. To study the monitoring and modeling of degradation, the ageing cycles to which the lamina was exposed were: alternating cycles of UV radiation and heated steam, a cycle only of UV radiation and a cycle only of heated steam, for a period defined by norm. The laminates have already undergone only the alternating cycle of UV and heated steam. At the end of the exposure period the specimens were subjected to a structural stability assessment by means of the developed measurement of thickness variation technique (MTVT) and the measurement of mass variation technique (MMVT). Then they were subjected to the mechanical tests of uniaxial tension for the lamina and all the laminates, besides the bending test on three points for the laminates. This study was followed by characterization of the fracture and the surface degradation. Finally, a model was developed for the composites called Ageing Zone Diagram (AZD) for monitoring and predicting the tensile strength after the ageing processes. From the results it was observed that the process of degradation occurs Abstract Raimundo Nonato Barbosa Felipe xiv differently for each composite studied, although all were affected in certain way and that the most aggressive ageing process was that of UV radiation, and that the hybrid laminated fibers of glass-E/curaua composite was most affected in its mechanical properties
Resumo:
Many astronomical observations in the last few years are strongly suggesting that the current Universe is spatially flat and dominated by an exotic form of energy. This unknown energy density accelerates the universe expansion and corresponds to around 70% of its total density being usually called Dark Energy or Quintessence. One of the candidates to dark energy is the so-called cosmological constant (Λ) which is usually interpreted as the vacuum energy density. However, in order to remove the discrepancy between the expected and observed values for the vacuum energy density some current models assume that the vacuum energy is continuously decaying due to its possible coupling with the others matter fields existing in the Cosmos. In this dissertation, starting from concepts and basis of General Relativity Theory, we study the Cosmic Microwave Background Radiation with emphasis on the anisotropies or temperature fluctuations which are one of the oldest relic of the observed Universe. The anisotropies are deduced by integrating the Boltzmann equation in order to explain qualitatively the generation and c1assification of the fluctuations. In the following we construct explicitly the angular power spectrum of anisotropies for cosmologies with cosmological constant (ΛCDM) and a decaying vacuum energy density (Λ(t)CDM). Finally, with basis on the quadrupole moment measured by the WMAP experiment, we estimate the decaying rates of the vacuum energy density in matter and in radiation for a smoothly and non-smoothly decaying vacuum
Resumo:
It was synthesized different Ni1-xMgxFe2O4 (0,2 ≤ x ≤ 0,7) compositions by use of citrate precursor method. Initially, the precursory citrates of iron, nickel and magnesium were mixed and homogenized. The stoichiometric compositions were calcined from 350°C to 1200°C at ambient atmosphere or in argon atmosphere. The calcined powders were characterized by XRD, TGA/DTG, FTIR, magnetic measures and reflectivity using the wave guide method. I was observed pure magnetic phase formation between 350°C and 500°C, with formation of ferrite and hematite after 600°C at ambient atmosphere. The calcined powder at argon atmosphere formed pure ferromagnetic phase at 1100°C and 1200°C. The Rietveld analyses calculated the cations level occupation and the crystallite size. The analyses obtained nanometric crystals (11-66 nm), that at 900°C/3h presents micrometric sizes (0,45 - 0,70 Om). The better magnetization results were 54 Am2/Kg for x= 0,2 composition, calcined at 350°C/3h and 30 min, and 55,6 Am2/Kg for x= 0,2 1200°C, calcined in argon. The hysteresis shows characteristics of soft magnetic material. Two magnetization processes were considered, superparamagnetism at low temperature and the magnetic domains formation at high temperatures. The materials presented absorption less or equal the 50 % in ranges specific frequency. As for the 2,0 and 3,0 thickness (in 11,0 - 11,8 GHz), the reflectivity of the x= 0,3, 0,5 and 0,4 compositions, all calcined at 900°C/3h showed agreement with MS and O. Various factors contribute for the final radiation absortion effect, such as, the particle size, the magnetization and the polymer characteristics in the MARE composition. The samples that presented better magnetization does not obtaining high radiation absorption. It is not clear the interrelaction between the magnetization and the radiation absorption in the strip of frequencies studied (8,2 - 12,4 GHz)
Resumo:
Were synthesized ferrites of NiZn on systems Ni0,5Zn0,5Fe2O4, the precursors citrate method. The decomposition of the precursors was studied by thermogravimetric analysis and spectroscopy in the infrared region, the temperature of 350°C/3h. The evolution of the phases formed after calcinations at 350ºC/3h, 600, 1000 and 1100ºC/2h was accompanied by X-ray diffraction using the Rietveld refinement method for better identification os structures formed. Was observed for samples calcined at different temperatures increased crystallinity with increasing calcination temperature, being observed for the samples calcined at 900 and 1100 º C/2h was the precipitation of a secondary phase, the phase hematite. The ferrocarbonila of industrial origin was analyzed by X-ray diffraction and Rietveld for the identification of its structure. The carbonyl iron was added NiZn ferrite calcined at 350ºC/3h, 600, 900, 1000 and 1100ºC/2h to the formation of hybrid mixtures. They were then analyzed by Xray diffraction and Rietveld. The NiZn ferrite and ferrocarbonila as well as the hybrid mixtures were subjected to analysis of scanning electron microscopy, magnetic measurements and reflectivity. The magnetic measurements indicated that the ferrite, the ferrocarbonila, as well as hybrid mixtures showed characteristics of soft magnetic material. The addition of ferrocarbonila in all compositions showed an increase in the results of magnetic measurements and reflectivity. Best result was observed in the increase of the magnetization for the hybrid mixture of Ferrocarbonila / ferrite of NiZn calcined at 600ºC/2h. The mixture Ferrocarbonila / ferrite calcined 1000°C/2h presented better absorption of electromagnetic radiation in the microwave
Resumo:
Many species have specialized to live in the most varied existing environments showing the remarkable adaptability of the microbial world the most diverse physicochemical conditions. Environments exposed to natural radiation and metals are scarce around the world, presenting a microbiota still unknown. With a total number estimated between 4 and 6 x 1030 microrganisms on earth, they constitute an enormous biological and genetic pool to be explored. Metagenomic approach independent of cultivation, provides a new form to access to the potential genomic environmental samples becoming a powerful tool for the elucidation of ecological functions, metabolic profiles, as well as to identify new biomolecules. In this context, the genetic material of environmental soil and water samples from Açude Boqueirao Parelhas-RN, under the influence of natural radiation and the presence of metals, was extracted, pirosequencing and the generated sequences were analyzed by bioinformatics programs (MG-RAST and STAMP). Taxonomic comparative profiles of both samples showed high abundance of Domain Bacteria, followed by a small portion attributable to Eucaryota Domains, Archaea and Viruses. Proteobacteria, Actinobacteria and Bacterioidetes phyla showed the greater dominance in both samples. Important genera and species associated with resistance to various stressors found in region were observed. Sequences related to oxidative and heat stress, DNA replication and repair, and resistance to toxic compounds were observed, suggesting a significant relationship between the microbiota and their metabolic profile, influenced by regional environmental variables. The results of this study add valuable and unpublished data on the composition of microbial communities in these regions
Resumo:
The contamination of water bodies with toxic substances causes a decrease in water quality, representing a risk to public health. In this context, human activities are generally seen as the main sources of water degradation. However, elements found naturally in the environment can also compromise water quality. Thus, the Boqueirão‘s dam, located in the municipality of Parelhas (RN, Brazil), was chosen as area for the development of this study, as its geological region is rich in the emission of natural ionizing radiation that produces byproducts like lead and Radon. Moreover, the area has a strong human influence that enhances the risks of pollutant discharge in this body of water.Thus, the objectives of this study were centered (i) in the analysis of risk perception in the city of Parelhas (RN/Brasil) due to the use of the water from the Boqueirão Dam; and (ii) in the assessment of water quality in the Dam using methods that quantify, mainly, heavy metals and radiation levels, as well as these toxics potential of inducing mutations on genetic material. The analysis of risk perception showed that the population in the city of Parelhas can perceive a risk in using the water from the dam and that they can recognize factors that influence the water quality. Regarding the second objective, the set of data point to the contamination of the Dam by heavy metals, as well as levels of radioactive parcicles and Radon – also present in high concentrations in outdoor air and on soil. Thus, it is possible to infer that the population residing in this area is subjected to injuries caused by exposure to natural and anthropogenic contamination. Our findings corroborate with the perception of the population regarding the risks associated with the use of the Dam for several types of activities. It is expected that the information gathered in this study can substantiate activities and future researches in this semiarid region in the Rio Grande do Norte/Brazil. Also, that the set of data can enable a better understanding of the specific toxicological scenario of risk found for the population and the effect of the contamination for the biota, which aids the development of a future risk assessment and a consequent management of this local issue.
Resumo:
Launching centers are designed for scientific and commercial activities with aerospace vehicles. Rockets Tracking Systems (RTS) are part of the infrastructure of these centers and they are responsible for collecting and processing the data trajectory of vehicles. Generally, Parabolic Reflector Radars (PRRs) are used in RTS. However, it is possible to use radars with antenna arrays, or Phased Arrays (PAs), so called Phased Arrays Radars (PARs). Thus, the excitation signal of each radiating element of the array can be adjusted to perform electronic control of the radiation pattern in order to improve functionality and maintenance of the system. Therefore, in the implementation and reuse projects of PARs, modeling is subject to various combinations of excitation signals, producing a complex optimization problem due to the large number of available solutions. In this case, it is possible to use offline optimization methods, such as Genetic Algorithms (GAs), to calculate the problem solutions, which are stored for online applications. Hence, the Genetic Algorithm with Maximum-Minimum Crossover (GAMMC) optimization method was used to develop the GAMMC-P algorithm that optimizes the modeling step of radiation pattern control from planar PAs. Compared with a conventional crossover GA, the GAMMC has a different approach from the conventional one, because it performs the crossover of the fittest individuals with the least fit individuals in order to enhance the genetic diversity. Thus, the GAMMC prevents premature convergence, increases population fitness and reduces the processing time. Therefore, the GAMMC-P uses a reconfigurable algorithm with multiple objectives, different coding and genetic operator MMC. The test results show that GAMMC-P reached the proposed requirements for different operating conditions of a planar RAV.
Desenvolvimento de bloco de vedação com barita na composição de partida para blindagem de radiação X
Resumo:
This work main objective is to study the use of bricks in barium X-rays rooms in order to contribute to the optimization of shielding rooms diagnosis. The work was based on experimental measurements of X-ray attenuation (40 to 150 kV), using ceramic seal bearing the incorporation of barium sulfat (BaSO4). Different formulations were studied in three different firing temperatures and evaluated for incorporation in the ceramic body. The composition of 20% of barite processed at a temperature of 950 ° C showed better physical and mechanical properties, is considered the most suitable for the purpose of this work. Were produced bricks sealing composition formulated based on that presented the best technological features. These blocks were tested physically as a building material and wall protective barrier. Properties such as visual, deviation from the square, face flatness, water absorption and compressive strength were evaluated for all the blocks produced. The behavior of this material as attenuator for X-rays was investigated by experimental results which take into account mortar manufacturers barium through the different strains and compared with the reference material (Pb). The simulation results indicated that the ceramic block barium shows excellent properties of attenuation equivalence lead taking into account the energy used in diagnostic X-ray
Resumo:
Building design is an effective way to achieve HVAC energy consumption reduction. However, this potentiality is often neglected by architects due to the lack of references to support design decisions. This works intends to propose architectural design guidelines for energy efficiency and thermal performance of Campus/UFRN buildings. These guidelines are based on computer simulations results using the software DesignBuilder. The definition of simulation models has begun with envelope variables, partially done after a field study of thirteen buildings at UFRN/Campus. This field study indicated some basic envelope patterns that were applied in simulation models. Occupation variables were identified with temperature and energy consumption monitoring procedures and a verification of illumination and equipment power, both developed at the Campus/UFRN administration building. Three simulation models were proposed according to different design phases and decisions. The first model represents early design decisions, simulating the combination of different types of geometry with three levels of envelope thermal performance. The second model, still as a part of early design phase, analyses thermal changes between circulation halls lateral and central and office rooms, as well as the heat fluxes and monthly temperatures in each circulation hall. The third model analyses the influence of middle-design and detail design decisions on energy consumption and thermal performance. In this model, different solutions of roofs, shading devices, walls and external colors were simulated. The results of all simulation models suggest a high influence of thermal loads due to the incidence of solar radiation on windows and surfaces, which highlights the importance of window shading devices, office room orientation and absorptance of roof and walls surfaces
Resumo:
The assessment of building thermal performance is often carried out using HVAC energy consumption data, when available, or thermal comfort variables measurements, for free-running buildings. Both types of data can be determined by monitoring or computer simulation. The assessment based on thermal comfort variables is the most complex because it depends on the determination of the thermal comfort zone. For these reasons, this master thesis explores methods of building thermal performance assessment using variables of thermal comfort simulated by DesignBuilder software. The main objective is to contribute to the development of methods to support architectural decisions during the design process, and energy and sustainable rating systems. The research method consists on selecting thermal comfort methods, modeling them in electronic sheets with output charts developed to optimize the analyses, which are used to assess the simulation results of low cost house configurations. The house models consist in a base case, which are already built, and changes in thermal transmittance, absorptance, and shading. The simulation results are assessed using each thermal comfort method, to identify the sensitivity of them. The final results show the limitations of the methods, the importance of a method that considers thermal radiance and wind speed, and the contribution of the chart proposed