82 resultados para Molibdato de cálcio
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
Protein and caloric malnutrition has been considered one of the most concerned endemic diseases in Brazil and in the world. It has been known that depletion or reduction of proteins as far as meals are concerned can steer irreversible damages upon several organic systems. This study had as aim evaluate the effects the low-protein diet had over the formation and composition of the teeth components. 18 females and 6 males were used for the experiment. 12 from the 18 females had undertaken the low-protein diet (DH) for 03 weeks and the other 6, which remained, and those males had undertaken a controlled diet (DC) for the same period. All animals had the diets during their mating, pregnancy and lactation cycle. As soon as the offsprings had been born, 10 young males and females of each group faced a disease hood analysis to check the teeth germs of their lower fore teeth. The rest of the group had their lactation cycle normally 60 days. Then they were put to death and had their lower fore teeth removed both to be analyzed through a scanning electronic microscopy (SEM) of the structure alterations and to have their calcium checked by an atomic absorption of the phosphorus vanadate-molibdate method and by other minerals EDX method. The animals livers were removed to have their hepatic proteins analyzed as well. The histopatologic study showed that at first day of birth, all animals had their lower fore teeth come out. It was verified that 90% of the animals teeth were in an apposition and calcification period and it was possible to observe the dentin formation from 60% of the 90% already mentioned. Through the SEM method it could be realized that 90% of the animals of the DH group had their lower fore teeth easily broken and no definite shape. In this same group itself, it was also observed long micro fissures 369,66 nm ± 3,45 while the DC group had fissures of 174 nm ± 5,72. Now regarding the calcium and phosphorus concentration, it could be noticed that there was a great reduction of these components and other minerals in the DH group. Almost all minerals, except for the Cl and K, presented higher levels in the DC group enamel.The reduction of the protein input greatly influenced the offsprings´ weight and height. However the hepatic proteins had no important difference between the groups what can make one believe that those animals suffered from protein malnutrition of marasmic kind
Resumo:
Nowadays, the search for new technologies that are able to follow the upcoming challenges in oil industry is a constant. Always trying properties improvements of the used materials, looking for the best performance and greater life time. Besides the search for technologies that show an improvement of performance, the search for materials environmentally correct along the whole production process. In Oil well cementing, this search for new technologies passes through the development of slurry systems that support these requests and that are also environmentally friendly. In this context, the use of geopolymer slurries is a great alternative route to cementing oil wells. Besides having good properties, comparable to Portland cement slurries, this alternative material releases much less CO2 gas in the production of their root materials when compared the production of Portland cement, which releases tons of CO2. In order to improve the properties of geopolymer slurries has been added Calcium Oxide, as observed in other studies that slurries where the Calcium is present the values of compressive strength is greater. The addition has been realized based in the CaO/SiO2 molar ratio of 0.05, 0.10 and 0.15. Have been performed compressive strength tests, thickening time, rheology and fliud loss control test of the slurries, following NBR 9831, as well as the physical chemical characterization of XRD, SEM and TG. Has been observed in most of the tests the slurries follow a tendency until the ratio of 0.10, which inverses in the ratio 0.15. This behavior can be explained by two phenomena that occur simultaneously, the first one is the break of the polymer chains and a consequent increase in molucules mobility, which prevails until the ratio of 0.1, and the second is possible approach of the chains due to the capacity of the calcium ions stabilize the charges of two different aluminum. There is only one linearity in the mechanical behavior that can be attributed to the appereance of the C-S-H phase. Based on this, it is concluded that the phenomenon of breaking the polymer chains predominates until the ratio of 0.1, causing an increase of the filtrate volume, lower rheological parameters and increasing thickening time. From the ratio of 0.15 the approach of the chains predominates, and the behavior is reversed
Resumo:
The science of Dentistry wishes obtains the ideal solution for the dental plaque chemical control. This research evaluated antimicrobial action capacity in calcium hydroxide and tergentol various solutions starting for the CHD 20, a root canals irrigating solution with a reason of 80% calcium hydroxide saturated solution and 20% tergentol detergent with the aim of evaluate this drug mouth rinse indication with prevention or combat objective for dental caries and periodontal diseases. Antibiogram disks and biofilm tests were accomplished for the microorganisms: Streptococcus mutans, Streptococcus sanguis, Streptococcus sobrinus and Lactobacillus casei. Different reasons of detergent for the calcium hydroxide saturated solution, tergentol and distillated water solution, 0,12% clorhexydine digluconate solution was positive control and distillated water was negative control. The results showed better performance of clorhexydine in relation to calcium hydroxide directing to not accept this (CHD20) as mouth rinse solution
Resumo:
The use of composite materials and alternative is being increased every day, as it becomes more widespread awareness that the use of renewable and not harmful to the environment is part of a new environmentally friendly model. Since its waste (primarily fiberglass) can not be easily recycled by the difficulty that still exists in this process, since they have two phases mixed, a polymeric matrix thermoset difficult to recycle because it is infusible and phase of fiber reinforcements. Thermoset matrix composites like Polyester + fiberglass pose a threat due to excessive discharge. Aiming to minimize this problem, aimed to reuse the composite Polyester + fiber glass, through the wastes obtained by the grinding of knifes and balls. These residues were incorporated into the new composite Polyester/Fiberglass for hot compression mold and compared tribological to composites with filler CaCO3, generally used as filler, targeting a partial replacement of CaCO3 by such waste. The composites were characterized by thermal analysis (TGA, DSC and DMA), by the surface integrity (roughness determination, contact angle and surface energy), mechanical properties (hardness) and tribological tests (wear and coefficient of dynamic friction) in order to evaluate the effect of loads and characterize these materials for applications that can take, in the tribological point of view since waste Polyester + fiberglass has great potential for replacement of CaCO3
Resumo:
Recently, genetically encoded optical indicators have emerged as noninvasive tools of high spatial and temporal resolution utilized to monitor the activity of individual neurons and specific neuronal populations. The increasing number of new optogenetic indicators, together with the absence of comparisons under identical conditions, has generated difficulty in choosing the most appropriate protein, depending on the experimental design. Therefore, the purpose of our study was to compare three recently developed reporter proteins: the calcium indicators GCaMP3 and R-GECO1, and the voltage indicator VSFP butterfly1.2. These probes were expressed in hippocampal neurons in culture, which were subjected to patchclamp recordings and optical imaging. The three groups (each one expressing a protein) exhibited similar values of membrane potential (in mV, GCaMP3: -56 ±8.0, R-GECO1: -57 ±2.5; VSFP: -60 ±3.9, p = 0.86); however, the group of neurons expressing VSFP showed a lower average of input resistance than the other groups (in Mohms, GCaMP3: 161 ±18.3; GECO1-R: 128 ±15.3; VSFP: 94 ±14.0, p = 0.02). Each neuron was submitted to current injections at different frequencies (10 Hz, 5 Hz, 3 Hz, 1.5 Hz, and 0.7 Hz) and their fluorescence responses were recorded in time. In our study, only 26.7% (4/15) of the neurons expressing VSFP showed detectable fluorescence signal in response to action potentials (APs). The average signal-to-noise ratio (SNR) obtained in response to five spikes (at 10 Hz) was small (1.3 ± 0.21), however the rapid kinetics of the VSFP allowed discrimination of APs as individual peaks, with detection of 53% of the evoked APs. Frequencies below 5 Hz and subthreshold signals were undetectable due to high noise. On the other hand, calcium indicators showed the greatest change in fluorescence following the same protocol (five APs at 10 Hz). Among the GCaMP3 expressing neurons, 80% (8/10) exhibited signal, with an average SNR value of 21 ±6.69 (soma), while for the R-GECO1 neurons, 50% (2/4) of the neurons had signal, with a mean SNR value of 52 ±19.7 (soma). For protocols at 10 Hz, 54% of the evoked APs were detected with GCaMP3 and 85% with R-GECO1. APs were detectable in all the analyzed frequencies and fluorescence signals were detected from subthreshold depolarizations as well. Because GCaMP3 is the most likely to yield fluorescence signal and with high SNR, some experiments were performed only with this probe. We demonstrate that GCaMP3 is effective in detecting synaptic inputs (involving Ca2+ influx), with high spatial and temporal resolution. Differences were also observed between the SNR values resulting from evoked APs, compared to spontaneous APs. In recordings of groups of cells, GCaMP3 showed clear discrimination between activated and silent cells, and reveals itself as a potential tool in studies of neuronal synchronization. Thus, our results indicate that the presently available calcium indicators allow detailed studies on neuronal communication, ranging from individual dendritic spines to the investigation of events of synchrony in neuronal networks genetically defined. In contrast, studies employing VSFPs represent a promising technology for monitoring neural activity and, although still to be improved, they may become more appropriate than calcium indicators, since neurons work on a time scale faster than events of calcium may foresee
Resumo:
Cortical interneurons are characterized by their distinct morphological, physiological and biochemical properties, acting as modulators of the excitatory activity by pyramidal neurons, for example. Various studies have revealed differences in both distribution and density of this cell group throughout distinct cortical areas in several species. A particular class of interneuron closely related to cortical modulation is revealed by the immunohistochemistry for calcium binding proteins calbindin (CB), calretinina (CR) and parvalbumin (PV). Despite the growing amount of studies focusing on calcium binding proteins, the prefrontal cortex of primates remains relatively little explored, particularly in what concerns a better understanding of the organization of the inhibitory circuitry across its subdivisions. In the present study we characterized the morphology and distribution of neurons rich in calcium-binding proteins in the medial, orbital and dorsolateral areas of the prefrontal cortex of the marmoset (Callithrix jacchus). Using both morphometric and stereological techniques, we found that CR-reactive neurons (mainly double bouquet and bipolar cells) have a more complex dendritic arborization than CB-reactive (bitufted and basket cells) and PV-reactive neurons (chandelier cells). The neuronal densities of CR- and CB-reactive cells are higher in the supragranular layers (II/III) whilst PV-reactive neurons, conversely, are more concentrated in the infragranular layers (V/VI). CR-reactive neurons were the predominant group in the three regions evaluated, being most prevalent in dorsomedial region. Our findings point out to fundamental differences in the inhibitory circuitry of the different areas of the prefrontal cortex in marmoset
Resumo:
The present study utilized the thermogravimetry (TG) and optical emission spectroscopy with inductively coupled plasma - ICP / OES to determine the calcium content in tablets of carbonate, citrate and calcium lactate used in the treatment of osteoporosis. The samples were characterized by IR, SEM, TG / DTG, DTA, DSC and XRD. The thermal analysis evaluated the thermal stability and physical-chemical events and showed that the excipients influence the decomposition of active ingredients. The results of thermogravimetry indicated that the decomposition temperature of the active CaCO3 (T = 630.2 °C) is lower compared to that obtained in samples of the tablets (633.4 to 655.2 °C) except for sample AM 2 (Ti = 613.8 oC). In 500.0 °C in the samples of citrate and calcium lactate, as well as their respective active principles had already been formed calcium carbonate. The use of N2 atmosphere resulted in shifting the initial and final temperature related to the decomposition of CaCO3. In the DTA and DSC curves were observed endo and exothermic events for the samples of tablets and active ingredients studied. The infrared spectra identified the main functional groups in all samples of active ingredients, excipients and tablets studied, such as symmetric and asymmetric stretches of the groups OH, CH, C = O. Analysis by X-ray diffraction showed that all samples are crystalline and that the final residue showed peaks indicative of the presence of calcium hydroxide by the reaction of calcium oxide with moisture of the air. Although the samples AM 1, AM 2, AM 3 and AM 6 in their formulations have TiO2 and SiO2 peaks were not observed in X-ray diffractograms of these compounds. The results obtained by TGA to determine the calcium content of the drugs studied were satisfactory when compared with those obtained by ICP-OES. In the AM 1 tablet was obtained the content of 35.37% and 32.62% for TG by ICP-OES, at 6 AM a percentage of 17.77% and 16.82% and for AM 7 results obtained were 8.93% for both techniques, showing that the thermogravimetry can be used to determine the percentage of calcium in tablets. The technique offers speed, economy in the use of samples and procedures eliminating the use of acid reagents in the process of the sample and efficiency results.
Resumo:
In this work, the structures of LaCoO3, La0,8Ba0,2CoO3 and La0,8Ca0,2CoO3 perovskites were characterized as a function of temperature (LaCoO3 structure being analyzed only at room temperature). The characterization of these materials were made by X-Ray Absorption Spectroscopy (XAS), in the cobalt K-edge, taking into account the correlated Einstein model X-ray absorption fine structure (EXAFS). The first part of the absorption spectrum corresponded the X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS). These materials were prepared by the combustion method. The combustion products were calcinated at 900 0C, for 6 hours in air. Noted that the sample LaCoO3 at room temperature and samples doped with Calcium and Barium in the temperature range of 50 K to 298 K showed greater distortion to monoclinic symmetry with space group I2/a. However, the sample doped with barium at the temperatures 50 K, 220 K, and 260 K showed a slight distortion to rhombohedral symmetry with space group R-3c. The La0,8Ca0, 2CoO3 structure was few sensitive to temperature variation, showing a higher local distortion in the octahedron and a higher local thermal disorder. These interpretations were in agreement with the information electronic structural on the XANES region and geometric in the EXAFS region
Resumo:
The role of carboxymethylcellulose (CMC) in association to calcium carbonate particles (CaCO3) in most water-based drilling fluids is to reduce the fluid loss to the surrounding formation. Another essential function is to provide rheological properties capable of maintaining in suspension the cuttings during drilling operation. Therefore, it is absolutely essential to correlate the polymer chemical structure (degree of substitution, molecular weight and distribution of substituent) with the physical-chemical properties of CaCO3, in order to obtain the better result at lower cost. Another important aspect refers to the clay hydration inhibitive properties of carboxymethylcellulose (CMC) in drilling fluids systems. The clay swelling promotes an undesirable damage that reduces the formation permeability and causes serious problems during the drilling operation. In this context, this thesis consists of two main parts. The first part refers to understanding of interactions CMC-CaCO3, as well as the corresponding effects on the fluid properties. The second part is related to understanding of mechanisms by which CMC adsorption occurs onto the clay surface, where, certainly, polymer chemical structure, ionic strength, molecular weight and its solvency in the medium are responsible to affect intrinsically the clay layers stabilization. Three samples of carboximetilcellulose with different molecular weight and degree of substitution (CMC A (9 x 104 gmol DS 0.7), CMC B (2.5 x 105 gmol DS 0.7) e CMC C (2.5 x 105 gmol DS 1.2)) and three samples of calcite with different average particle diameter and particle size distribution were used. The increase of CMC degree of substitution contributed to increase of polymer charge density and therefore, reduced its stability in brine, promoting the aggregation with the increase of filtrate volume. On the other hand, the increase of molecular weight promoted an increase of rheological properties with reduction of filtrate volume. Both effects are directly associated to hydrodynamic volume of polymer molecule in the medium. The granulometry of CaCO3 particles influenced not only the rheological properties, due to adsorption of polymers, but also the filtration properties. It was observed that the lower filtrate volume was obtained by using a CaCO3 sample of a low average size particle with wide dispersion in size. With regards to inhibition of clay swelling, the CMC performance was compared to other products often used (sodium chloride (NaCl), potassium chloride (KCl) and quaternary amine-based commercial inhibitor). The low molecular weight CMC (9 x 104 g/mol) showed slightly lower swelling degree compared to the high molecular weight (2.5 x 105 g/mol) along to 180 minutes. In parallel, it can be visualized by Scanning Electron Microscopy (SEM) that the high molecular weight CMC (2.5 x 105 g/mol e DS 0.7) promoted a reduction in pores formation and size of clay compared to low molecular weight CMC (9.0 x 104 g/mol e DS 0.7), after 1000 minutes in aqueous medium. This behavior was attributed to dynamic of interactions between clay and the hydrodynamic volume of CMC along the time, which is result of strong contribution of electrostatic interactions and hydrogen bounds between carboxylate groups and hydroxyls located along the polymer backbone and ionic and polar groups of clay surface. CMC adsorbs on clay surface promoting the skin formation , which is responsible to minimize the migration of water to porous medium. With the increase of degree of substitution, it was observed an increase of pores onto clay, suggesting that the higher charge density on polymer is responsible to decrease its flexibility and adsorption onto clay surface. The joint evaluation of these results indicate that high molecular weight is responsible to better results on control of rheological, filtration and clay swelling properties, however, the contrary effect is observed with the increase of degree of substitution. On its turn, the calcite presents better results of rheological and filtration properties with the decrease of average viii particle diameter and increase of particle size distribution. According to all properties evaluated, it has been obvious the interaction of CMC with the minerals (CaCO3 and clay) in the aqueous medium
Resumo:
The calcium ferrite (Ca2Fe2O5) has a perovskite-type structure with oxygen deficiency and is used as a chemical catalyst. With the advent of nanoscience and nanotechnology, methods of preparation, physical and chemical characterizations, and the technological applications of nanoparticles have attracted great scientific interest. Calcium nanostructured ferrites were produced via high-energy milling, with subsequent heat treatment. The milling products were characterized by X-ray diffraction, magnetization and Mössbauer spectroscopy. Samples of the type Ca2Fe2O5 were obtained from the CaCO3 and Fe2O3 powder precursors, which were mixed stoichiometrically and milled for 10h and thermally treated at 700ºC, 900ºC and 1100ºC. The Mössbauer spectra of the treated samples were adjusted three subespectros: calcium ferrite (octahedral and tetrahedral sites) and a paramagnetic component, related to very small particles of calcium ferrite, which are in a superparamagnetic state. For samples beats in an atmosphere of methyl alcohol, there is a significant increase in area associated with the paramagnetic component. Hysteresis curves obtained are characteristic of a weak ferromagnetic-like material
Resumo:
Chitin is the second most abundant polysaccharide in nature and its derivative chitosan has been widely studied due to its unique chemical and pharmacological properties. However, studies show that when this molecule is used as food, drug, etc. it tends to accumulate in renal tissue and promotes an increase in calcium excretion. Nevertheless, the effect of chitosan on the formation of calcium oxalate (OxCa) crystals has never been evaluated. The formation of kidney stones (urolithiasis) is the disease that most often affects the kidneys and the urinary system. In addition, this is a disease with high prevalence and recurrence. Many molecules with antioxidant activity have been shown to decrease the potential for in vitro OxCa crystals formation. Thus, the aim of this study was to evaluate the effect of low molecular weight chitosan and its derivatives conjugated to gallic acid (AG) as antioxidant and inhibitor of OxCa crystals formation. The physico-chemical analysis confirmed the identity of chitosan. This molecule was subjected to five antioxidant tests and showed an excellent copper chelating activity. However, chitosan did not show other significant antioxidant activity. When chitosan was subjected to in vitro crystal formation tests, it increased the number of OxCa monohydrate crystals, modified the morphology of the crystals, modified the proportions between populations of crystals in solution and increased the zeta potential of these crystals formed. Four molecules of chitosan conjugated with GA were obtained. The physico-chemical analysis confirmed that chitosan and AG were covalently bonded. However, the amount of GA liked to chitosan did not increase even when 10 times more GA was used in experiment. When these derivatives were subjected to antioxidant tests, all chitosan conjugates showed higher antioxidant potential than their precursors. However, they showed different activity between them, which indicating that the position where AG is conjugated is an important factor for chitosan-GA activity. When conjugated chitosans were submitted to in vitro crystal formation tests, a reduction in the crystals number was observed when compared with those formed in the presence of unconjugated chitosan. Chitosan has a strong capacity for inducing OxCa monohydrate crystal formation, as well as modify their morphology and zeta potential. Over all, the process of conjugating AG to chitosan led to an increase in antioxidant potential of this molecule and was also able to decrease its capacity of inducing in vitro crystal formation
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
Protein and caloric malnutrition has been considered one of the most concerned endemic diseases in Brazil and in the world. It has been known that depletion or reduction of proteins as far as meals are concerned can steer irreversible damages upon several organic systems. This study had as aim evaluate the effects the low-protein diet had over the formation and composition of the teeth components. 18 females and 6 males were used for the experiment. 12 from the 18 females had undertaken the low-protein diet (DH) for 03 weeks and the other 6, which remained, and those males had undertaken a controlled diet (DC) for the same period. All animals had the diets during their mating, pregnancy and lactation cycle. As soon as the offsprings had been born, 10 young males and females of each group faced a disease hood analysis to check the teeth germs of their lower fore teeth. The rest of the group had their lactation cycle normally 60 days. Then they were put to death and had their lower fore teeth removed both to be analyzed through a scanning electronic microscopy (SEM) of the structure alterations and to have their calcium checked by an atomic absorption of the phosphorus vanadate-molibdate method and by other minerals EDX method. The animals livers were removed to have their hepatic proteins analyzed as well. The histopatologic study showed that at first day of birth, all animals had their lower fore teeth come out. It was verified that 90% of the animals teeth were in an apposition and calcification period and it was possible to observe the dentin formation from 60% of the 90% already mentioned. Through the SEM method it could be realized that 90% of the animals of the DH group had their lower fore teeth easily broken and no definite shape. In this same group itself, it was also observed long micro fissures 369,66 nm ± 3,45 while the DC group had fissures of 174 nm ± 5,72. Now regarding the calcium and phosphorus concentration, it could be noticed that there was a great reduction of these components and other minerals in the DH group. Almost all minerals, except for the Cl and K, presented higher levels in the DC group enamel.The reduction of the protein input greatly influenced the offsprings´ weight and height. However the hepatic proteins had no important difference between the groups what can make one believe that those animals suffered from protein malnutrition of marasmic kind
Resumo:
Nowadays, the search for new technologies that are able to follow the upcoming challenges in oil industry is a constant. Always trying properties improvements of the used materials, looking for the best performance and greater life time. Besides the search for technologies that show an improvement of performance, the search for materials environmentally correct along the whole production process. In Oil well cementing, this search for new technologies passes through the development of slurry systems that support these requests and that are also environmentally friendly. In this context, the use of geopolymer slurries is a great alternative route to cementing oil wells. Besides having good properties, comparable to Portland cement slurries, this alternative material releases much less CO2 gas in the production of their root materials when compared the production of Portland cement, which releases tons of CO2. In order to improve the properties of geopolymer slurries has been added Calcium Oxide, as observed in other studies that slurries where the Calcium is present the values of compressive strength is greater. The addition has been realized based in the CaO/SiO2 molar ratio of 0.05, 0.10 and 0.15. Have been performed compressive strength tests, thickening time, rheology and fliud loss control test of the slurries, following NBR 9831, as well as the physical chemical characterization of XRD, SEM and TG. Has been observed in most of the tests the slurries follow a tendency until the ratio of 0.10, which inverses in the ratio 0.15. This behavior can be explained by two phenomena that occur simultaneously, the first one is the break of the polymer chains and a consequent increase in molucules mobility, which prevails until the ratio of 0.1, and the second is possible approach of the chains due to the capacity of the calcium ions stabilize the charges of two different aluminum. There is only one linearity in the mechanical behavior that can be attributed to the appereance of the C-S-H phase. Based on this, it is concluded that the phenomenon of breaking the polymer chains predominates until the ratio of 0.1, causing an increase of the filtrate volume, lower rheological parameters and increasing thickening time. From the ratio of 0.15 the approach of the chains predominates, and the behavior is reversed