115 resultados para Misturas polimericas
Resumo:
MELO, Maxymme Mendes de ; PINHEIRO, Andrea Santos ; NASCIMENTO, R. M. ; MARTINELLI, Antonio Eduardo ; DUTRA, Ricardo Peixoto Suassuna ; MELO, Marcus Antônio de Freitas . Análise microestrutural de misturas cerâmicas de grês Porcelanato com adição de chamote de telhas cerâmicas. Cerâmica (São Paulo. Impresso), v. 55, p. 356-364, 2009
Estudo térmico dos resíduos gerados da destilação atmosférica das misturas diesel/biodiesel de dendê
Resumo:
The growing world demand for energy supplied by fossil fuels, a major contributor to the emission of pollutants into the atmosphere and causing environmental problems, has been encouraging governments and international organizations to reflect and encourage the use of alternative renewable sources. Among these new possibilities deserves attention biodiesel, fuel cleaner and easy to reproduce. The study of new technologies involving that source is necessary. From this context, the paper aims at analyzing the thermal stability by thermogravimetric analysis, of the waste generated from atmospheric distillation of mixtures with ratios of 5, 10, 15 and 20% palm biodiesel in diesel with and without addition of BHT antioxidant. It was synthesized biodiesel through palm oil, via homogeneous catalysis in the presence of KOH, with and without the use of BHT and subsequently added to the diesel common indoor type (S1800) from a gas station BR. The diesel was already added with 5% biodiesel, and thus the proportions used for these blends were subtracted from the existing ratio in diesel fuel, resulting in the following proportions palm oil biodiesel: 0% (B5), 5% (B10), 10 % (B15) and 15% (B20). From atmospheric distillation analysis, performed in mixtures with and without BHT were collected residue generated by each sample and performed a thermal study from the thermogravimetric analysis at a heating rate of 10 °C.min-1, nitrogen atmosphere and heating to 600 ° C. According to the specifications of Resolution No. 7/2008 for biodiesel, it was found that the material was synthesized in accordance with the specifications. For mixtures, it was noted that the samples were in accordance with the ANP Resolution No. 42/2009. Given the TG / DTG curves of the samples of waste mixtures with and without BHT antioxidant was able to observe that they showed a single stage of thermal decomposition attributed to decomposition of heavy hydrocarbons and esters and other heavier constituents of the waste sample weighed. The thermal behavior of residues from atmospheric distillation of mixtures of diesel / biodiesel is very important to understand how this affects the proper functioning of the engine. A large amount of waste can generate a high content of particulate material, coke formation and carbonaceous deposits in engine valves, compromising their performance
Resumo:
An economical solution for cementing oil wells is the use of pre-prepared dry mixtures containing cement and additives. The mixtures may be formulated, prepared and transported to the well where is added water to be pumped.Using this method, becomes dispensable to prepare the cement mixes containing additives in the cementing operation, reducing the possibility of error. In this way, the aim of this work is to study formulations of cement slurries containing solid additives for primary cementing of oil wells onshore for typical depths of 400, 800 and 1,200 meters. The formulations are comprised of Special Class Portland cement, mineral additions and solids chemical additives.The formulated mixtures have density of 1.67 g / cm ³ (14.0 lb / gal). Their optimization were made through the analysis of the rheological parameters, fluid loss results, free water, thickening time, stability test and mechanical properties.The results showed that mixtures are in conformity the specifications for cementing oil wells onshore studied depths
Resumo:
The composition of petroleum may change from well to well and its resulting characteristics influence significantly the refine products. Therefore, it is important to characterize the oil in order to know its properties and send it adequately for processing. Since petroleum is a multicomponent mixture, the use of synthetic mixtures that are representative of oil fractions provides a better understand of the real mixture behavior. One way for characterization is usually obtained through correlation of physico-chemical properties of easy measurement, such as density, specific gravity, viscosity, and refractive index. In this work new measurements were obtained for density, specific gravity, viscosity, and refractive index of the following binary mixtures: n-heptane + hexadecane, cyclohexane + hexadecane, and benzene + hexadecane. These measurements were accomplished at low pressure and temperatures in the range 288.15 K to 310.95 K. These data were applied in the development of a new method of oil characterization. Furthermore, a series of measurements of density at high pressure and temperature of the binary mixture cyclohexane + n-hexadecane were performed. The ranges of pressure and temperature were 6.895 to 62.053 MPa and 318.15 to 413.15 K, respectively. Based on these experimental data of compressed liquid mixtures, a thermodynamic modeling was proposed using the Peng-Robinson equation of state (EOS). The EOS was modified with scaling of volume and a relatively reduced number of parameters were employed. The results were satisfactory demonstrating accuracy not only for density data, but also for isobaric thermal expansion and isothermal compressibility coefficients. This thesis aims to contribute in a scientific manner to the technological problem of refining heavy fractions of oil. This problem was treated in two steps, i.e., characterization and search of the processes that can produce streams with economical interest, such as solvent extraction at high pressure and temperature. In order to determine phase equilibrium data in these conditions, conceptual projects of two new experimental apparatus were developed. These devices consist of cells of variable volume together with a analytical static device. Therefore, this thesis contributed with the subject of characterization of hydrocarbons mixtures and with development of equilibrium cells operating at high pressure and temperature. These contributions are focused on the technological problem of refining heavy oil fractions
Resumo:
Drying of fruit pulps in spouted beds of inert particles has been indicated as a viable technique to produce fruit powders. Most of the processes employed to produce dried fruit pulps and juices, such as Foam Mat, encapsulation by co-crystallization and spray drying utilize adjuvant and additives (such as thickeners, coating materials, emulsifiers, acidulants, flavors and dyes), which is not always desirable. The fruit pulp composition exerts an important effect on the fruit powder production using a spouted bed. In the study by Medeiros (2001) it was concluded that lipids, starch and pectin contents play an important role on the process performance, enhancing the powder production; however, the drying of fruit pulps containing high content of reducing sugars (glucose and fructose) is practically unviable. This work has the objective of expanding the studies on drying of fruit pulps in spouted bed with aid of adjuvant (lipids, starch and pectin) aiming to enhance the dryer performance without jeopardizing the sensorial quality of the product. The optimum composition obtained by Medeiros (2001) was the basis for preparing the mixtures of pulps. The mixture formulations included pulps of mango (Mangifera indica), umbu (Spondias tuberosa) and red mombin (Spondia purpurea) with addition of cornstarch, pectin and lipids. Different products were used as lipids source: olive and Brazil nut oils, coconut milk, heavy milk, powder of palm fat and palm olein. First of all, experiments were conducted to define the best formulation of the fruit pulps mixture. This definition was based on the drying performance obtained for each mixture and on the sensorial characteristics of the dry powder. The mixture formulations were submitted to drying at fixed operating conditions of drying and atomizing air flow rate, load of inert particles, temperature and flow rate of the mixture. The best results were obtained with the compositions having powder of palm fat and palm olein in terms of the drying performance and sensorial analysis. Physical and physicochemical characteristics were determined for the dry powders obtained from the mixtures formulations. Solubility and reconstitution time as well as the properties of the product after reconstitution were also evaluated. According to these analyses, the powder from the mixtures formulations presented similar characteristics and compatible quality to those produced in other types of dryers. Considering that the palm olein is produced in Brazil and that it has been used in the food industry substituting the palm fat powder, further studies on drying performance were conducted with the composition that included the palm olein. A complete factorial design of experiments 23, with three repetitions at the central point was conducted to evaluate the effects of the air temperature, feeding flow rate and intermittence time on the responses related to the process performance (powder collection efficiency, material retained in the bed and angle of repose of the inert particles after the process) and to the product quality (mean moisture content, loss of vitamin C and solubility). Powder production was uniform for the majority of the experiments and the higher efficiency with lower retention in the bed (59.2% and 1.8g, respectively) were obtained for the air temperature of 80°C, mixture feed rate of 5ml/min in intervals of 10 min. The statistical analysis of the results showed that the process variables had individual or combined significant influences on the powder collection efficiency, material retention in the bed, powder moisture content and loss of vitamin C. At the experimental ranges of this work, the angle of repose and solubility were not influenced by the operating variables. From the results of the experimental design, statistical models were obtained for the powder moisture content and loss of vitamin C
Resumo:
Drying of fruit pulps in spouted beds of inert particles has been indicated as a viable technique to produce fruit powders. Most of the processes employed to produce dried fruit pulps and juices, such as Foam Mat, encapsulation by co-crystallization and spray drying utilize adjuvant and additives (such as thickeners, coating materials, emulsifiers, acidulants, flavors and dyes), which is not always desirable. The fruit pulp composition exerts an important effect on the fruit powder production using a spouted bed. In the study by Medeiros (2001) it was concluded that lipids, starch and pectin contents play an important role on the process performance, enhancing the powder production; however, the drying of fruit pulps containing high content of reducing sugars (glucose and fructose) is practically unviable. This work has the objective of expanding the studies on drying of fruit pulps in spouted bed with aid of adjuvant (lipids, starch and pectin) aiming to enhance the dryer performance without jeopardizing the sensorial quality of the product. The optimum composition obtained by Medeiros (2001) was the basis for preparing the mixtures of pulps. The mixture formulations included pulps of mango (Mangifera indica), umbu (Spondias tuberosa) and red mombin (Spondia purpurea) with addition of cornstarch, pectin and lipids. Different products were used as lipids source: olive and Brazil nut oils, coconut milk, heavy milk, powder of palm fat and palm olein. First of all, experiments were conducted to define the best formulation of the fruit pulps mixture. This definition was based on the drying performance obtained for each mixture and on the sensorial characteristics of the dry powder. The mixture formulations were submitted to drying at fixed operating conditions of drying and atomizing air flow rate, load of inert particles, temperature and flow rate of the mixture. The best results were obtained with the compositions having powder of palm fat and palm olein in terms of the drying performance and sensorial analysis. Physical and physicochemical characteristics were determined for the dry powders obtained from the mixtures formulations. Solubility and reconstitution time as well as the properties of the product after reconstitution were also evaluated. According to these analyses, the powder from the mixtures formulations presented similar characteristics and compatible quality to those produced in other types of dryers. Considering that the palm olein is produced in Brazil and that it has been used in the food industry substituting the palm fat powder, further studies on drying performance were conducted with the composition that included the palm olein. A complete factorial design of experiments 23, with three repetitions at the central point was conducted to evaluate the effects of the air temperature, feeding flow rate and intermittence time on the responses related to the process performance (powder collection efficiency, material retained in the bed and angle of repose of the inert particles after the process) and to the product quality (mean moisture content, loss of vitamin C and solubility). Powder production was uniform for the majority of the experiments and the higher efficiency with lower retention in the bed (59.2% and 1.8g, respectively) were obtained for the air temperature of 80°C, mixture feed rate of 5ml/min in intervals of 10 min. The statistical analysis of the results showed that the process variables had individual or combined significant influences on the powder collection efficiency, material retention in the bed, powder moisture content and loss of vitamin C. At the experimental ranges of this work, the angle of repose and solubility were not influenced by the operating variables. From the results of the experimental design, statistical models were obtained for the powder moisture content and loss of vitamin C
Resumo:
The construction of wells is one of the most important activities of the oil industry. The drilling process is the set of activities and operations to design, program and perform the opening thereof. During this process, the cuttings are removed by the drilling fluid, or mud, and carted to the surface. This fluid is injected into the drill string and returns to the surface through the annular space between the well walls and the drill string. After the descent of the column casing, the annular space between the casing string and the walls of the borehole is filled with cement so as to secure the spine and prevent any migration of fluids between the various permeable zones traversed by the well behind of the coating. To ensure the good quality of the cementation scrubbers are used mattresses which are pumped ahead of the cement slurry so as to avoid contamination of the drilling fluid paste, or vice versa, and assist in the removal of plaster, formed by drilling fluid of the borehole walls, thus enabling a better cement bond to the well. Within this context, this work aims to evaluate the efficiency of mattresses scrubbers, the basis of ionic and nonionic surfactants, on the removal of nonaqueous drilling fluid, based on n-paraffin in oil wells, and the compatibility between the Mattress relations washer / drilling fluid bed scrubber / cement paste mattress washer / cement slurry / drilling fluid and the drilling fluid / cement slurry using laboratory tests rheology, thickening time and compressive strength. Also technique was performed X-ray diffraction (XRD) for a more detailed analysis of these mixtures with hydrated cement paste. In compatibility tests the conditions of temperature and pressure used in the same laboratory procedure simulating the conditions of oil wells, the well is considered the depth of 800 m. The results showed that the compositions of the mattress washer nonionic, KMS obtained a 100% efficient in removing the non-aqueous drilling fluid, and the best formulation showed good results with respect to compliance testing
Resumo:
Foi desenvolvido um método para detectar e quantificar misturas de corantes em sucos artificiais em pó fabricados no Brasil, de diferentes marcas e sabores. Foram estudados 6 corantes artificiais: amarelo tartrazina, amarelo crepúsculo, vermelho ponceau 4R, vermelho bordeaux S, vermelho 40 e azul brilhante presentes de forma unitária ou em misturas nos sucos com sabores laranja, tangerina, maracujá, abacaxi, limão e uva. A identificação dos corantes nas amostras foi feita através da comparação com os espectros dos padrões, utilizando-se a análise por infravermelho médio e pelos respectivos valores de absorção máxima nos comprimentos de onda relativos aos padrões e valores de referência na literatura. Também foram estudados os perfis de decomposição térmica por termogravimetria, termogravimetria derivada e calorimetria diferencial exploratória dos corantes e dos sucos em pó, sendo determinados os teores de umidade, de matéria orgânica e de cinzas. O teor de umidade encontrado não ultrapassou 4% para todas as amostras de suco analisadas. Com relação ao teor de matéria orgânica obteve-se para 57% dos sucos analisados um teor médio de 51,3% e para 43% das outras amostras obteve-se uma média de 67,2 %. Os resultados obtidos para o teor de cinzas indicaram que 29% das amostras apresentaram um teor de 26,7% para esse parâmetro enquanto 71% das amostras apresentaram um teor de cinzas de 46,4%. Os resultados obtidos por análise térmica mostraram-se adequados considerando-se que para obter os resultados pelo método tradicional há um investimento maior de tempo, de pessoal envolvido e de material, além da proteção ao meio ambiente. Para a análise por espectroscopia de absorção molecular foi proposta uma equação simplificada para a determinação de cada corante na mistura utilizando-se a lei de Beer. Para validação, empregou-se a espectroscopia de absorção molecular no visível, onde foi investigada a influência dos interferentes (TiO2 e açúcar) presentes nas amostras de sucos, os testes de fotodegradação e a avaliação do efeito do pH. Para quantificação tomou-se como referência 512 amostras sintéticas contendo um e dois corantes (1,5625 a 25,000 mg L-1) para obtenção das curvas analíticas que foram aplicadas à análise dos sucos em pó. Os resultados indicaram que o teor máximo do amarelo crepúsculo foi encontrado nos sucos com os sabores laranja, tangerina e manga que correspondeu a 25,6% da ingestão diária aceitável (para ser ultrapassada corresponderia a ingestão de 4 copos). O teor máximo encontrado para o amarelo tartrazina nos sucos foi para o sabor maracujá que correspondeu a 8,5% da ingestão diária aceitável, (para ser alcançado corresponderia a ingestão de 12 copos). O método proposto foi testado e validado com sucesso para amostras de sucos em pó sendo de simples execução e de rapidez na obtenção dos resultados
Resumo:
The drilling of wells for petroleum extraction generates rocks and soils fragments, among other residues. These fragments are denominated petroleum drilling gravel or simply petroleum drilling residue. On the sites of onshore exploration are formed big deposits of drilling gravel, an expensive final destination material. This work aims at evaluating the addition of drilling residue to a lateritic soil, as composite material, for construction of compacted fills for earth work projects. Soil and residue were evaluated by X-ray diffraction (XRD) and X-ray fluorescence (XRF) and by laboratory tests traditionally used in soil mechanics, as particle-size analysis of soils, determination of liquid and plasticity indexes and compaction test. After soil and residue characterization, soil-residue mixtures were studied, using dosages of 2,5%, 5%, 10%, and 15% of residue in relation to the dry soil mass. These mixtures were submitted to compaction test, CBR, direct shear test and consolidation test. The test results were compared to the current legislation of DNIT for compacted fill construction. The results showed that the mixtures presented the minimal necessary parameters, allowing, from the point of view of geotechnical analysis, the use of these mixtures for construction of compacted fills
Resumo:
The nickel alloys are widely used in the production of various materials, especially those that require mechanical strength characteristics associated with resistance to corrosion, for example, the stainless steel. Another use is the production of nickel alloy sintered from powder of metallic nickel. A promising alternative for the production of sintered components of nickel with an important reduction in costs of starting material is the use of mixtures of powders of Ni-NiO. This work aimed to study in situ reduction of NiO during sintering mixtures of Ni / NiO produced by powder metallurgy. The nickel mixtures have been processed by the technique of powder metallurgy and were pre-sintered in an oven under plasma reducing atmosphere of hydrogen. Mixtures Ni +15%NiO, Ni +25%NiO and Ni +35%NiO were studied and compared with samples consisting only of metallic Ni. Dilatometric tests were performed to study the sintering conditions of the mixtures. The consolidated material was analyzed for their microstructure and microhardness. Dilatometry graphs showed that the addition of nickel oxide in all compositions the active sintering the mixtures studied. In tests of microhardness indentations were made at different points of the sample surface. All compositions showed microhardness values close to the consolidated material from metallic nickel. However, sample containing Ni+35% NiO, showed a large dispersion of the values of microhardness tests performed at different points of the sample surface. Microstructural analysis of the material showed a higher concentration of voids and the presence of oxides in the waste composition of the mixtures Ni 35% NiO. The samples containing Ni+15%NiO showed microstructural characteristics and mechanical properties similar to metallic nickel consolidated under the same conditions of the compositions studied in this work and therefore had great potential for production of sintered nickel alloys
Resumo:
The soursop (A. muricata) is a fruit rich in minerals especially the potassium content. The commercialization of soursop in natura and processed has increased greatly in recent years. Drying fruit pulp in order to obtain the powdered pulp has been studied, seeking alternatives to ensure the quality of dehydrated products at a low cost of production. The high concentration of sugars reducing present in fruits causes problems of agglomeration and retention during fruit pulp drying in spouted bed dryers. On the other hand in relation to drying of milk and fruit pulp with added milk in spouted bed, promising results are reported in the literature. Based on these results was studied in this work drying of the pulp soursop with added milk in spouted bed with inert particles. The tests were based on a 24 factorial design were evaluated for the effects of milk concentration (30 to 50% m/m), drying air temperature (70 to 90 °C), intermittency time (10 to 14 min), and ratio of air velocity in relation to the minimum spout (1.2 to 1.5) on the rate of production, of powder moisture, yield, rate of drying and thermal efficiency of the process. There were physical and chemical analysis of mixtures, of powders and of mixtures reconstituted by rehydration powders. Were adjusted statistical models of first order to data the rate of production, yield and thermal efficiency, that were statistically significant and predictive. An efficiency greater than 40% under the conditions of 50% milk mixture, at 70 ° C the drying air temperature and 1.5 for the ratio between the air velocity and the minimum spout has been reached. The intermittency time showed no significant effect on the analyzed variables. The final product had moisture in the range of 4.18% to 9.99% and water activity between 0.274 to 0.375. The mixtures reconstituted by rehydration powders maintained the same characteristics of natural blends.
Resumo:
Government efforts have found some obstacles in achieving a better infrastructure regarding environmental preservation requirements. There is a need to develop new techniques that leave the big exploitation of environmental resources. This study measures the evaluation of the behavior of a composite formed by lateritic soil mix and tire buffings. In this way, a road embankment model was developed to assess the bearing capacity of the composite. This study measured the load capacity of the composites with 0%, 10%, 20% and 40% rubber mixed with the soil, by weight, iron plate loading tests on a simulated embankment in a metal box of 1.40 x 1.40 x 0.80 m. After four compaction layers of the composite, a plate test was performed, and then stress-settlement curves were obtained for the material. The embankments with 20% and 40% rubber content was difficult to compact. There was a significant reduction in the load capacity of the soil-plate system with increasing rubber content. The composite with the lowest loss of bearing capacity in relation to the reference soil was the one with a χ = 10%. In the load capacity tests, another aspect noted was the bearing capacity in terms of CBR. The results also show a gradual decrease in bearing capacity in the composites as with the rubber incorporation content increases. As in the plate load tests, the composite that had the lower bearing capacity loss was also that with 10% content.
Resumo:
This study is an analysis, on a trial basis, the fuel consumption of a Flex vehicle, operating with different mixtures of gasoline and ethanol in urban traffic, allowing more consistent results with the reality of the driver. Considering that most owners unaware of the possibility of mixing the fuel at the time of supply, thus enabling the choice of the most economically viable mixing gasoline / ethanol, resulting in lower costs and possibly a decrease in pollutant emission rates. Currently, there is a myth created by the people that supply ethanol only becomes viable if the value of not more than 70% of regular gasoline. However vehicles with this technology make it possible to operate with any percentage of mixture in the fuel tank, but today many of the owners of these vehicles do not use this feature effectively, because they ignore the possibility of mixing or the reason there is a deeper study regarding the optimal percentage of the mixture to provide a higher yield with a lower cost than proposed by the manufacturers.
Resumo:
This study is an analysis, on a trial basis, the fuel consumption of a Flex vehicle, operating with different mixtures of gasoline and ethanol in urban traffic, allowing more consistent results with the reality of the driver. Considering that most owners unaware of the possibility of mixing the fuel at the time of supply, thus enabling the choice of the most economically viable mixing gasoline / ethanol, resulting in lower costs and possibly a decrease in pollutant emission rates. Currently, there is a myth created by the people that supply ethanol only becomes viable if the value of not more than 70% of regular gasoline. However vehicles with this technology make it possible to operate with any percentage of mixture in the fuel tank, but today many of the owners of these vehicles do not use this feature effectively, because they ignore the possibility of mixing or the reason there is a deeper study regarding the optimal percentage of the mixture to provide a higher yield with a lower cost than proposed by the manufacturers.
Resumo:
Brazil is a country in development, rich in natural resources. In order to grow sustainably, it is necessary to Brazil to preserve its environment, which is an expressive challenge, especially to industries, such as those producing ceramic materials. This study was developed using Porcelain Tile Polishing Residue (RPP) in blends with soil to build compacted fills. This residue is a slurry generated during the polishing process of porcelain tiles and contains powdery material from the polished tile, the abrasives used during the process and cooling water. The RPP was collected from a private company located in Conde/PB and it was mixed with a sandy-clayey soil, to build the fills. Laboratorial tests were conducted with pure soil, pure RPP and blends in proportions of 5%, 10%, 15% and 20% of RPP in addition to the dry mass of pure soil. The Chemical and Physical Characterization tests performed were: specific solid weight, grain size distribution, laser analysis of grain size distribution, Atterberg limits, X ray fluorescence, X ray diffraction, scanning electron microscopy and soil compaction,. The materials and blends were also compacted and direct shear tests and plate load tests were performed. Plate load tests were conducted using a circular plate with 30 cm diameter, on specimens of pure soil and 5% blend, compacted in a metallic box inside the Soil Mechanics Laboratory of the Federal University of Rio Grande do Norte, Brazil. Both mechanical tests performed were conducted under inundated conditions, willing to reduce the influence of soil suction. An evaluation of the results of the tests performed shows that RPP is a fine material, with grain size distribution smaller than 0,015mm, composed mainly of silica and alumina, and particles in angular shape. The soil was characterized as a clayey sand, geologically known as a lateritic soil, with high percentages of alumina and iron oxide, and particles with rounded shape. Both the Soil and the blends presented low plasticity, while the residue showed a medium plasticity. Direct shear tests showed that the addition of RPP did not cause major changes into blends’ friction angle data, however, it was possible to note that, for the proportions studied, that is a tendency of obtain lower shear stresses for higher percentages of RPP in the blends. Both pure soil and 5% mixture showed a punching disruption for the Plate load test. For this same test, the allowable stress for 5% mixture was 44% higher than the pure soil, and smaller vertical settlement results for all stresses.