6 resultados para Métodos matemáticos
Resumo:
The usual programs for load flow calculation were in general developped aiming the simulation of electric energy transmission, subtransmission and distribution systems. However, the mathematical methods and algorithms used by the formulations were based, in majority, just on the characteristics of the transmittion systems, which were the main concern focus of engineers and researchers. Though, the physical characteristics of these systems are quite different from the distribution ones. In the transmission systems, the voltage levels are high and the lines are generally very long. These aspects contribute the capacitive and inductive effects that appear in the system to have a considerable influence in the values of the interest quantities, reason why they should be taken into consideration. Still in the transmission systems, the loads have a macro nature, as for example, cities, neiborhoods, or big industries. These loads are, generally, practically balanced, what reduces the necessity of utilization of three-phase methodology for the load flow calculation. Distribution systems, on the other hand, present different characteristics: the voltage levels are small in comparison to the transmission ones. This almost annul the capacitive effects of the lines. The loads are, in this case, transformers, in whose secondaries are connected small consumers, in a sort of times, mono-phase ones, so that the probability of finding an unbalanced circuit is high. This way, the utilization of three-phase methodologies assumes an important dimension. Besides, equipments like voltage regulators, that use simultaneously the concepts of phase and line voltage in their functioning, need a three-phase methodology, in order to allow the simulation of their real behavior. For the exposed reasons, initially was developped, in the scope of this work, a method for three-phase load flow calculation in order to simulate the steady-state behaviour of distribution systems. Aiming to achieve this goal, the Power Summation Algorithm was used, as a base for developing the three phase method. This algorithm was already widely tested and approved by researchers and engineers in the simulation of radial electric energy distribution systems, mainly for single-phase representation. By our formulation, lines are modeled in three-phase circuits, considering the magnetic coupling between the phases; but the earth effect is considered through the Carson reduction. It s important to point out that, in spite of the loads being normally connected to the transformer s secondaries, was considered the hypothesis of existence of star or delta loads connected to the primary circuit. To perform the simulation of voltage regulators, a new model was utilized, allowing the simulation of various types of configurations, according to their real functioning. Finally, was considered the possibility of representation of switches with current measuring in various points of the feeder. The loads are adjusted during the iteractive process, in order to match the current in each switch, converging to the measured value specified by the input data. In a second stage of the work, sensibility parameters were derived taking as base the described load flow, with the objective of suporting further optimization processes. This parameters are found by calculating of the partial derivatives of a variable in respect to another, in general, voltages, losses and reactive powers. After describing the calculation of the sensibility parameters, the Gradient Method was presented, using these parameters to optimize an objective function, that will be defined for each type of study. The first one refers to the reduction of technical losses in a medium voltage feeder, through the installation of capacitor banks; the second one refers to the problem of correction of voltage profile, through the instalation of capacitor banks or voltage regulators. In case of the losses reduction will be considered, as objective function, the sum of the losses in all the parts of the system. To the correction of the voltage profile, the objective function will be the sum of the square voltage deviations in each node, in respect to the rated voltage. In the end of the work, results of application of the described methods in some feeders are presented, aiming to give insight about their performance and acuity
Resumo:
Waste stabilization ponds (WSP) have been widely used for sewage treatment in hot climate regions because they are economic and environmentally sustainable. In the present study a WSP complex comprising a primary facultative pond (PFP) followed by two maturation ponds (MP-1 and MP-2) was studied, in the city of Natal-RN. The main objective was to study the bio-degradability of organic matter through the determination of the kinetic constant k throughout the system. The work was carried out in two phases. In the first, the variability in BOD, COD and TOC concentrations and an analysis of the relations between these parameters, in the influent raw sewage, pond effluents and in specific areas inside the ponds was studied. In the second stage, the decay rate for organic matter (k) was determined throughout the system based on BOD tests on the influent sewage, pond effluents and water column samples taken from fixed locations within the ponds, using the mathematical methods of Least Squares and the Thomas equation. Subsequently k was estimated as a function of a hydrodynamic model determined from the dispersion number (d), using empirical methods and a Partial Hydrodynamic Evaluation (PHE), obtained from tracer studies in a section of the primary facultative pond corresponding to 10% of its total length. The concentrations of biodegradable organic matter, measured as BOD and COD, gradually reduced through the series of ponds, giving overall removal efficiencies of 71.95% for BOD and of 52.45% for COD. Determining the values for k, in the influent and effluent samples of the ponds using the mathematical method of Least Squares, gave the following values respectively: primary facultative pond (0,23 day-1 and 0,09 day-1), maturation 1 (0,04 day-1 and 0,03 day-1) and maturation 2 (0,03 day-1 and 0,08 day-1). When using the Thomas method, the values of k in the influents and effluents of the ponds were: primary facultative pond (0,17 day-1 and 0,07 day-1), maturation 1 (0,02 day-1 and 0,01 day-1) and maturation 2 (0,01 day-1 and 0,02 day-1). From the Partial Hydrodynamic Evaluation, in the first section of the facultative pond corresponding to 10% of its total length, it can be concluded from the dispersion number obtained of d = 0.04, that the hydraulic regime is one of dispersed flow with a kinetic constant value of 0.20 day-1
Resumo:
Stabilization pond is the main technology used for treatment wastewater, in northeast Brazil, due to lower cost of deployment, operation and maintenance compared to other technologies. Most systems of stabilization ponds has been in operation for some time, on average 10 years of operation, receiving high organic loads and do not have good removal efficiencies of the main parameters for which have been designed. Therefore it is necessary to work to quantify the efficiency of current systems. This study evaluated the biodegradability of organic matter in raw sewage, the removal of organic matter in reactors and determination of the kinetic constant removal of organic matter (k), both in reactors and in raw sewage, based on the analysis made in the laboratory and through mathematical methods proposed in the literature, in nine systems stabilization ponds, located in Rio Grande do Norte. In relation the degradation kinetics in stabilization ponds, it was observed that many papers published in the literature were obtained in pilot-scale systems, which often, due to the action of external factors such as wind and temperature, these can t be considered as a reference in the analysis of the kinetic constant K, so the need for more research into systems of scale. This study had three distinct phases and simultaneous, routine monitoring, study of the daily cycle and the determination of kinetic constant of degradation of organic matter (K). The monitoring showed that the removal efficiencies of organic matter on most systems were lower than suggested by the literature, the best efficiencies of around 76% (BOD) and 72% (COD) and the worst of the order of 48% (BOD) and 55% (COD). The calculation of K in raw sewage (Ke) was within the range of variation expected in the literature (0.35 to 0.60 days-1). Already for the results obtained for K in the reactors (Kr), there were well below the values recommended in the literature (0.25 to 0.40 d-1 for complete mix and from 0.13 to 0.17 d-1 for flow dispersed), in line with the overloads that organic systems are subject
Resumo:
Forecast is the basis for making strategic, tactical and operational business decisions. In financial economics, several techniques have been used to predict the behavior of assets over the past decades.Thus, there are several methods to assist in the task of time series forecasting, however, conventional modeling techniques such as statistical models and those based on theoretical mathematical models have produced unsatisfactory predictions, increasing the number of studies in more advanced methods of prediction. Among these, the Artificial Neural Networks (ANN) are a relatively new and promising method for predicting business that shows a technique that has caused much interest in the financial environment and has been used successfully in a wide variety of financial modeling systems applications, in many cases proving its superiority over the statistical models ARIMA-GARCH. In this context, this study aimed to examine whether the ANNs are a more appropriate method for predicting the behavior of Indices in Capital Markets than the traditional methods of time series analysis. For this purpose we developed an quantitative study, from financial economic indices, and developed two models of RNA-type feedfoward supervised learning, whose structures consisted of 20 data in the input layer, 90 neurons in one hidden layer and one given as the output layer (Ibovespa). These models used backpropagation, an input activation function based on the tangent sigmoid and a linear output function. Since the aim of analyzing the adherence of the Method of Artificial Neural Networks to carry out predictions of the Ibovespa, we chose to perform this analysis by comparing results between this and Time Series Predictive Model GARCH, developing a GARCH model (1.1).Once applied both methods (ANN and GARCH) we conducted the results' analysis by comparing the results of the forecast with the historical data and by studying the forecast errors by the MSE, RMSE, MAE, Standard Deviation, the Theil's U and forecasting encompassing tests. It was found that the models developed by means of ANNs had lower MSE, RMSE and MAE than the GARCH (1,1) model and Theil U test indicated that the three models have smaller errors than those of a naïve forecast. Although the ANN based on returns have lower precision indicator values than those of ANN based on prices, the forecast encompassing test rejected the hypothesis that this model is better than that, indicating that the ANN models have a similar level of accuracy . It was concluded that for the data series studied the ANN models show a more appropriate Ibovespa forecasting than the traditional models of time series, represented by the GARCH model
Resumo:
This work has as main objective to find mathematical models based on linear parametric estimation techniques applied to the problem of calculating the grow of gas in oil wells. In particular we focus on achieving grow models applied to the case of wells that produce by plunger-lift technique on oil rigs, in which case, there are high peaks in the grow values that hinder their direct measurement by instruments. For this, we have developed estimators based on recursive least squares and make an analysis of statistical measures such as autocorrelation, cross-correlation, variogram and the cumulative periodogram, which are calculated recursively as data are obtained in real time from the plant in operation; the values obtained for these measures tell us how accurate the used model is and how it can be changed to better fit the measured values. The models have been tested in a pilot plant which emulates the process gas production in oil wells
Resumo:
Forecast is the basis for making strategic, tactical and operational business decisions. In financial economics, several techniques have been used to predict the behavior of assets over the past decades.Thus, there are several methods to assist in the task of time series forecasting, however, conventional modeling techniques such as statistical models and those based on theoretical mathematical models have produced unsatisfactory predictions, increasing the number of studies in more advanced methods of prediction. Among these, the Artificial Neural Networks (ANN) are a relatively new and promising method for predicting business that shows a technique that has caused much interest in the financial environment and has been used successfully in a wide variety of financial modeling systems applications, in many cases proving its superiority over the statistical models ARIMA-GARCH. In this context, this study aimed to examine whether the ANNs are a more appropriate method for predicting the behavior of Indices in Capital Markets than the traditional methods of time series analysis. For this purpose we developed an quantitative study, from financial economic indices, and developed two models of RNA-type feedfoward supervised learning, whose structures consisted of 20 data in the input layer, 90 neurons in one hidden layer and one given as the output layer (Ibovespa). These models used backpropagation, an input activation function based on the tangent sigmoid and a linear output function. Since the aim of analyzing the adherence of the Method of Artificial Neural Networks to carry out predictions of the Ibovespa, we chose to perform this analysis by comparing results between this and Time Series Predictive Model GARCH, developing a GARCH model (1.1).Once applied both methods (ANN and GARCH) we conducted the results' analysis by comparing the results of the forecast with the historical data and by studying the forecast errors by the MSE, RMSE, MAE, Standard Deviation, the Theil's U and forecasting encompassing tests. It was found that the models developed by means of ANNs had lower MSE, RMSE and MAE than the GARCH (1,1) model and Theil U test indicated that the three models have smaller errors than those of a naïve forecast. Although the ANN based on returns have lower precision indicator values than those of ANN based on prices, the forecast encompassing test rejected the hypothesis that this model is better than that, indicating that the ANN models have a similar level of accuracy . It was concluded that for the data series studied the ANN models show a more appropriate Ibovespa forecasting than the traditional models of time series, represented by the GARCH model