49 resultados para Hornos solares


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A solar alternative system for water heating is presented. It work on a thermosiphon, consisting of one or two alternative collectors and a water storage tank also alternative, whose main purpose is to socialize the use of energy mainly to be used by people of low income. The collectors were built from the use of pets bottles, cans of beer and soft drinks and tubes of PVC, ½ " and the thermal reservoirs from a drum of polyethylene used for storage of water and garbage placed inside cylinder of fiber glass and EPS ground between the two surfaces. Such collectors are formed by three elements: pet bottles, cans and tubes absorbers. The heating units, which form the collector contains inside the cans that can be closed, in original form or in the form of plate. The collectors have an absorber grid formed by eight absorbers PVC tube, connected through connections at T of the same material and diameter. It will be presented data of the thermal parameters which demonstrate the efficiency of the heating system proposed. Relative aspects will be boarded also the susceptibility the thermal degradation and for UV for the PVC tubes. It will be demonstrated that this alternative heating system, which has as its main feature low cost, presents thermal, economic and materials viabilities

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The conversion of solar energy in electric with photo-voltaic cells has been carried through exclusively with devices of semiconducting junction. To put this situation comes moving for better in them last years, thanks to a new technology of production of known solar cells as Dye Solar Cell. This proposal aims at to develop a DSC having as dye lavonoides of the Capsicum frutescens (malagueta pepper). Front is considered to evaluate the photo-voltaic parameters varies it regions of the visible specter, as well as a good efficiency of conversion

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It presents a direct exposure to solar dryer for drying of food, built from a scrap of luminaire. The dryer works under direct exposure to natural circulation. Will be presented their methods of construction and assembly of that dryer that allows the reuse of materials, constituting a environmentally correct recycling dryer main features proposed are its low cost and simple manufacturing processes and assembly. Test results will be presented for the drying of foods that prove the feasibility and cost of thermal solar drying alternative system proposed. It is worth emphasizing the social importance that such application is for the most excluded since the value-added fruits, vegetables, legumes and other foods in relation to fresh may represent an option of income generation. It will also study the transformation of some of dry food meal and demonstrated that the drying times for the foods tested are competitive and sometimes pointed in the solar literature

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composite materials can be defined as materials formed from two or more constituents with different compositions, structures and properties, which are separated by an interface. The main objective in producing composites is to combine different materials to produce a single device with superior properties to the component unit. The present study used a composite consisting of plaster, cement, EPS, tire, PET and water to build prototype solar attempt to reduce the manufacturing cost of such equipment. It was built two box type solar cookers, a cooler to be cooled by solar energy, a solar dryer and a solar cooker concentration. For these prototypes were discussed the processes of construction and assembly, determination of thermal and mechanical properties, and raising the performance of such solar systems. Were also determined the proportions of the constituents of the composite materials according to specific performance of each prototype designed. This compound proved to be feasible for the manufacture of such equipment, low cost and easy manufacturing and assembly processes

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study physical process that control the stellar evolution is strength influenced by several stellar parameters, like as rotational velocity, convective envelope mass deepening, and magnetic field intensity. In this study we analyzed the interconnection of some stellar parameters, as Lithium abundance A(Li), chromospheric activity and magnetic field intensity as well as the variation of these parameters as a function of age, rotational velocity, and the convective envelope mass deepening for a selected sample of solar analogs and twins stars. In particular, we analyzed the convective envelope mass deepening and the dispersion of lithium abundance for these stars. We also studied the evolution of rotation in subgiants stars, because its belong to the following evolutionary stage of solar analogs, and twins stars. For this analyze, we compute evolutionary models with the TGEC code to derive the evolutionary stage, as well as the convective envelope mass deepening, and derive more precisely the stellar mass, and age for this 118 stars. Our Investigation shows a considerable dispersion of lithium abundance for the solar analogs stars. We also realize that this dispersion is not by the convective zone deep, in this way we observed which the scattering of A(Li) can not be explained by classical theories of mixing in the convective zone. In conclusion we have that are necessary extra-mixing process to explain this decrease of Lithium abundance in solar analogs and twins stars. We analyzed the subgiant stars because this are the subsequent evolutionary stage after the solar analogs and twins stars. For this analysis, we compute the rotational period for 30 subgiants stars observed by Co- RoT satellite. For this task we apply two different methods: Lomb-Scargle algorithm, and the Plavchan Periodogram. We apply the TGEC code we compute models with internal distribution of angular momentum to confront the predict results with the models, and the observational results. With this analyze, we showed which solid body rotation models are incompatible with the physical interpretation of observational results. As a result of our study we still concluded that the magnetic field, convective envelope mass deepening, and internal redistribution of angular momentum are essential to explain the evolution of low-mass stars, and its observational characteristics. Based on population synthesis simulation, we concluded that the solar neighborhood presents a considerable quantity of solar twins when compared with the discovered set nowadays. Altogether we foresee the existence around 400 solar analogs in the solar neighborhood (distance of 100 pc). We also study the angular momentum of solar analogs and twins, in this study we concluded that added angular momentum from a Jupiter type planet, putted in the Jupiter position, is not enough to explain the angular momentum predicted by Kraft law (Kraft 1970)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of solar-type stars also includes the familiar solar analogs and twins. These objects have been one of the major research subjects in astrophysics nowadays. A direct comparison of solar activity with chromospheric activity indices for a set of stars very similar to the Sun (twins and analogs) provides an excellent opportunity to study the evolution of stellar activity on timescales of the order of the lifetime on the main sequence. This work deals with the relationship between the abundance of lithium, chromospheric activity, X-ray emission and rotation period in terms of stellar ages. We explore the influence of stellar evolution in the global properties of the stars and the aspects linked to its coronal, chromospheric and magnetic activity. Our main objective is to probe the law of decay of each of these parameters based on a sample of stars classified as well-connected as analogs stars and solar twins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The projected rotational velocity together with lithium abundance and the onset of the dilution by the deepening in mass of the convective envelope provide a key tool to investigate the so far poorly understood processes at work in stellar interiors of solar-analog stars. To investigate the link between abundances, convection and rotational velocities in solar-analog G dwarf stars, we study a bona fide sample of 118 selected solar-analog G dwarf stars presenting measured lithium abundances, rotational velocities, and fundamental parameters together with computed evolutionary tracks (Toulouse-Geneva code) for a range of stellar masses around 1 M and metallicity consistent with the solar-analog range. The aim of this work is to build up an evolution of lithium and rotation as a function of stellar age, mass, effective temperature, and convection. We analyze the evolutionary status of the sample of 118 solar-analog G dwarf in the HR diagram based on Hipparcos data and using a grid of stellar models in the effective temperature and mass range of the solar-analog stars. We discuss the deepening (in mass) of the convective envelope and the influence on the Li abundances and projected rotational velocities. We determined the stellar mass and the mass of the convective envelope for a bona fide sample of 118 selected solar-analog G dwarf and checked the evolutionary link between the rotational velocity, lithium abundance, and the deepening of the convective envelope. Fast rotators (vsini 6 km s��1) are also stars with high Li content. Slow rotators present a wide range of values of log n(Li). Our results shed new light on the lithium and rotational behavior in G dwarf stars. We confirmed the presence of a large Li abundance spread among the solar-analog stars and concluded that the solar twins probably share a similar mixing history with the Sun

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study proposes an observing program focused on the investigation of the stellar magnetism and dynamo evolution in cool active solar-like stars. More mainly in the solar analogs and twins. Observations of stars of our base were carried out with two spectropolarimeter (ESPaDOnS@CFHT and NARVAL@TBL). The analyse of stars in stage different allows an understanding of the dependence of magnetic activity on basic stellar parameters such as rotation, mass, age and depth of the convection zone. This study provides measures necessary for testing dynamo theories. The 65 targets for this project are solar type stars with mass spanning from 0:9 M=Mfi 1:075 solar masses and at different evolutionary stages. Our two main science objectives were, (i) To determine how the magnetic field evolved from the ZAMS to the TO (turn off) for stars with 0:9 M=Mfi 1:075; (ii) To determine the impact of convective depth and rotation on magnetic of cool stars of solar type. The main result from this study was the characterization of the dependence of magnetic field intensity as function of age, Rossby number and the convective zone deepening. This context, the availability of ESPaDOnS and NARVAL opens an exceptional possibility to study the magnetic properties of Sun-like stars by means of spectropolarimetric observations

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research is presented as a comparative study about the baking capacity of two box type ovens, produced from a packing case used to equipment transportation. The two ovens have different internal settings, with the greenhouse effect and the concentration of incident solar radiation as the main parameters of differentiation. The main features of the ovens are the low cost, the reuse of materials, the manufacturing and assembly processes simplified, the easy management and the ability of baking a variety of foods simultaneously. The manufacturing and operation of the ovens can be handled by any social and intellectual level of people. The feasibility of the ovens to bake the tested foods was proved with success, ensuring the supremacy of the mirrored oven. The results obtained for both ovens were competitive even with the conventional gas oven, producing the baking of three cakes with 750g in just 80 minutes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Building design is an effective way to achieve HVAC energy consumption reduction. However, this potentiality is often neglected by architects due to the lack of references to support design decisions. This works intends to propose architectural design guidelines for energy efficiency and thermal performance of Campus/UFRN buildings. These guidelines are based on computer simulations results using the software DesignBuilder. The definition of simulation models has begun with envelope variables, partially done after a field study of thirteen buildings at UFRN/Campus. This field study indicated some basic envelope patterns that were applied in simulation models. Occupation variables were identified with temperature and energy consumption monitoring procedures and a verification of illumination and equipment power, both developed at the Campus/UFRN administration building. Three simulation models were proposed according to different design phases and decisions. The first model represents early design decisions, simulating the combination of different types of geometry with three levels of envelope thermal performance. The second model, still as a part of early design phase, analyses thermal changes between circulation halls lateral and central and office rooms, as well as the heat fluxes and monthly temperatures in each circulation hall. The third model analyses the influence of middle-design and detail design decisions on energy consumption and thermal performance. In this model, different solutions of roofs, shading devices, walls and external colors were simulated. The results of all simulation models suggest a high influence of thermal loads due to the incidence of solar radiation on windows and surfaces, which highlights the importance of window shading devices, office room orientation and absorptance of roof and walls surfaces

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work concerns the use of shade elements as architectural elements to block sunlight in public buildings. In a city like Natal, (5o South) the incidence of sunrays in any type of design should be a constant concern for all the architects. Besides, this habit of avoiding insolation in the environment is not a common practice. Within this context, the present work has the objective to dig deep into the knowledge of solar control, studying some cases and verifying its function according to the orientation and the original design of the building, having in mind if the shade elements usually used in the region have achieved their purpose of providing protection against the incidence of direct sun rays. This study considers the position of the shade element (horizontal and vertical), the angle formed between them and the respective facades, and the local of the buildings in relation to their orientation during the summer, winter and equinox solstice. As supporting instruments the solar map of the city and the protractor, for measuring shade angles, were used. It was concluded that in all the cases studied, it was not possible to obtain the maximum use of the elements. It was verified that the best type of shade element (more efficient) for the city of Natal is the mixed type (horizontal and vertical) and that the vertical shade elements are more efficient in the early mornings and late afternoon. The horizontal shade elements are used more effective at midday. We intend to present the results of this study to the architects in the region in order to show them the correct ways of using the shade elements according to the possible orientation on the facade, as a supporting tool at the time of designing a project as well as a subsidy for further discussions on the elaboration of the new urban standards for the city of Natal/RN

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The generation of electricity in Brazil is predominantly renewable, with internal hydraulic generation being more than 70% of its energy matrix. The electricity rationing occurred in 2001 due to lack of rain, led the country to increase the participation of alternative energy sources. This need for new sources of energy makes the regional potential to be exploited, which configures the change of generation model from centralized generation to distributed generation. Among the alternative sources of energy, the solar energy is presented as very promising for Brazil, given that most of its territory is located near to the equator line, which implies days with greater number of hours of solar radiation. The state of Rio Grande do Norte (RN) has one of the highest levels of solar irradiation of the Brazilian territory, making it eligible to receive investments for the installation of photovoltaic solar plants. This thesis will present the state-of-the-art in solar photovoltaic power generation and will examine the potential for generation of solar photovoltaic power in Brazil and RN, based on solarimetrics measurements conducted by various institutions and also measurements performed in Natal, the state capital

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A model of a solar oven with a reflective surface composed of two mirror segments is presented, constituting a two semi-parabolic surfaces made of fiberglass, applied on a ceramic mold, intended to be used in residential and commercial cooking. The reflective surface of the semi-parable is obtained with the use of multiple plain segments of 2 mm wide mirrors. The semi-parabolic structure has visible movements that are comparable to that of the sun. The technical details of the manufacturing and assembling processes will be presented with an analysis of the viability of thermal, economic, and materials of such prototype. This prototype has important social implications and primordial aspects, which combats the ecological damages caused by the wide-scale use of firewood during cooking. It has been demonstrated that the solar oven has the capacity to cook simultaneous two meals distinct for a family of four

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An solar alternative system for water heating is presented. Is composed for one low cost alternative collector and alternative thermal reservoir for hot water storing. The collector of the system has box confectioned in composite material and use absorption coils formed for PVC tubes. The box of hot water storage was confectioned from a plastic polyethylene drum used for storage of water and garbage, coated for a cylinder confectioned in fiber glass. The principle of functioning of the system is the same of the conventionally. Its regimen of work is the thermosiphon for a volume of 250 liters water. The main characteristic of the system in considered study is its low cost, allowing a bigger socialization of the use of solar energy. It will be demonstrated the viabilities thermal, economic and of materials of the system of considered heating, and its competitiveness in relation to the available collectors commercially. Relative aspects will be boarded also the susceptibility the thermal degradation and for UV for the PVC tubes. It will be shown that such system of alternative heating, that has as main characteristic its low cost, presents viabilities thermal, economic and of materials

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An cylinder-parabolic solar concentrator is presented to produce steam for different applications. This prototype was built in glass fiber with dimensions that follow a study of optimization of parameters inherent in the optical reflection of sunlight by the surface of reflection and absorption of the same by tubing that leads the fluid of work. The surface of the concentrator of 2.24 m² has been covered by layers of mirror with 1.0 m of lenght and 2.0 cm wide. The absorb tubing consists of a copper tube diameter equal to 28 mm. The concentrator is moving to follow the apparent motion of the sun. It will be presented the processes of manufacturing and assembly of the concentrator proposed, which has as main characteristics the facilities construction and assembly, in addition to reduced cost. Will be presented data from tests performed to produce steam setting up some parameters that diagnose the efficiency of the concentrator. It will be demonstrated the viabilities thermal, economic and of materials of the proposed system.The maximum temperature achieved in the vacuum tube absorber was 232.1°C and average temperature for 1 hour interval was 171.5°C, obtained in a test with automation. The maximum temperature achieved in the output of water was 197.7°C for a temperature of 200.0°C in the absorber tube. The best average result of the water exit temperature to interval of 1 hour was 170.2°C for a temperature of 171.2°C, in the absorber tube, obtained in test with automation. Water exit mean temperatures were always above of the water steaming temperature. The concentrator present a useful efficiency of 38% and a production cost of approximately R$ 450,00 ( $ 160.34)