58 resultados para GEOMETRIA COMPUTACIONAL


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A matemática intervalar é uma teoria matemática originada na década de 60 com o objetivo de responder questões de exatidão e eficiência que surgem na prática da computação científica e na resolução de problemas numéricos. As abordagens clássicas para teoria da computabilidade tratam com problemas discretos (por exemplo, sobre os números naturais, números inteiros, strings sobre um alfabeto finito, grafos, etc.). No entanto, campos da matemática pura e aplicada tratam com problemas envolvendo números reais e números complexos. Isto acontece, por exemplo, em análise numérica, sistemas dinâmicos, geometria computacional e teoria da otimização. Assim, uma abordagem computacional para problemas contínuos é desejável, ou ainda necessária, para tratar formalmente com computações analógicas e computações científicas em geral. Na literatura existem diferentes abordagens para a computabilidade nos números reais, mas, uma importante diferença entre estas abordagens está na maneira como é representado o número real. Existem basicamente duas linhas de estudo da computabilidade no contínuo. Na primeira delas uma aproximação da saída com precisão arbitrária é computada a partir de uma aproximação razoável da entrada [Bra95]. A outra linha de pesquisa para computabilidade real foi desenvolvida por Blum, Shub e Smale [BSS89]. Nesta aproximação, as chamadas máquinas BSS, um número real é visto como uma entidade acabada e as funções computáveis são geradas a partir de uma classe de funções básicas (numa maneira similar às funções parciais recursivas). Nesta dissertação estudaremos o modelo BSS, usado para se caracterizar uma teoria da computabilidade sobre os números reais e estenderemos este para se modelar a computabilidade no espaço dos intervalos reais. Assim, aqui veremos uma aproximação para computabilidade intervalar epistemologicamente diferente da estudada por Bedregal e Acióly [Bed96, BA97a, BA97b], na qual um intervalo real é visto como o limite de intervalos racionais, e a computabilidade de uma função intervalar real depende da computabilidade de uma função sobre os intervalos racionais

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Baixa grande fault is located on the edge of the S-SW Potiguar Rift. It limits the south part of Umbuzeiro Graben and the Apodi Graben. Although a number of studies have associated the complex deformation styles in the hanging wall of the Baixa Grande Fault with geometry and displacement variations, none have applied the modern computational techniques such as geometrical and kinematic validations to address this problem. This work proposes a geometric analysis of the Baixa Fault using seismic interpretation. The interpretation was made on 3D seismic data of the Baixa Grande fault using the software OpendTect (dGB Earth Sciences). It was also used direct structural modeling, such as Analog Direct Modeling know as Folding Vectors and, 2D and 3D Direct Computational Modeling. The Folding Vectors Modeling presented great similarity with the conventional structural seismic interpretations of the Baixa Grande Fault, thus, the conventional interpretation was validated geometrically. The 2D direct computational modeling was made on some sections of the 3D data of the Baixa Grande Fault on software Move (Midland Valley Ltd) using the horizon modeling tool. The modeling confirms the influence of fault geometry on the hanging wall. The Baixa Grande Fault ramp-flat-ramp geometry generates synform on the concave segments of the fault and antiform in the convex segments. On the fault region that does not have segments angle change, the beds are dislocated without deformation, and on the listric faults occur rollover. On the direct 3D computational modeling, structural attributes were obtained as horizons on the hanging wall of the main fault, after the simulation of several levels of deformation along the fault. The occurrence of structures that indicates shortening in this modeling, also indicates that the antiforms on the Baixa Grande Fault were influenced by fault geometry

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oil production and exploration techniques have evolved in the last decades in order to increase fluid flows and optimize how the required equipment are used. The base functioning of Electric Submersible Pumping (ESP) lift method is the use of an electric downhole motor to move a centrifugal pump and transport the fluids to the surface. The Electric Submersible Pumping is an option that has been gaining ground among the methods of Artificial Lift due to the ability to handle a large flow of liquid in onshore and offshore environments. The performance of a well equipped with ESP systems is intrinsically related to the centrifugal pump operation. It is the pump that has the function to turn the motor power into Head. In this present work, a computer model to analyze the three-dimensional flow in a centrifugal pump used in Electric Submersible Pumping has been developed. Through the commercial program, ANSYS® CFX®, initially using water as fluid flow, the geometry and simulation parameters have been defined in order to obtain an approximation of what occurs inside the channels of the impeller and diffuser pump in terms of flow. Three different geometry conditions were initially tested to determine which is most suitable to solving the problem. After choosing the most appropriate geometry, three mesh conditions were analyzed and the obtained values were compared to the experimental characteristic curve of Head provided by the manufacturer. The results have approached the experimental curve, the simulation time and the model convergence were satisfactory if it is considered that the studied problem involves numerical analysis. After the tests with water, oil was used in the simulations. The results were compared to a methodology used in the petroleum industry to correct viscosity. In general, for models with water and oil, the results with single-phase fluids were coherent with the experimental curves and, through three-dimensional computer models, they are a preliminary evaluation for the analysis of the two-phase flow inside the channels of centrifugal pump used in ESP systems

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pumping through progressing cavities system has been more and more employed in the petroleum industry. This occurs because of its capacity of elevation of highly viscous oils or fluids with great concentration of sand or other solid particles. A Progressing Cavity Pump (PCP) consists, basically, of a rotor - a metallic device similar to an eccentric screw, and a stator - a steel tube internally covered by a double helix, which may be rigid or deformable/elastomeric. In general, it is submitted to a combination of well pressure with the pressure generated by the pumping process itself. In elastomeric PCPs, this combined effort compresses the stator and generates, or enlarges, the clearance existing between the rotor and the stator, thus reducing the closing effect between their cavities. Such opening of the sealing region produces what is known as fluid slip or slippage, reducing the efficiency of the PCP pumping system. Therefore, this research aims to develop a transient three-dimensional computational model that, based on single-lobe PCP kinematics, is able to simulate the fluid-structure interaction that occurs in the interior of metallic and elastomeric PCPs. The main goal is to evaluate the dynamic characteristics of PCP s efficiency based on detailed and instantaneous information of velocity, pressure and deformation fields in their interior. To reach these goals (development and use of the model), it was also necessary the development of a methodology for generation of dynamic, mobile and deformable, computational meshes representing fluid and structural regions of a PCP. This additional intermediary step has been characterized as the biggest challenge for the elaboration and running of the computational model due to the complex kinematic and critical geometry of this type of pump (different helix angles between rotor and stator as well as large length scale aspect ratios). The processes of dynamic generation of meshes and of simultaneous evaluation of the deformations suffered by the elastomer are fulfilled through subroutines written in Fortan 90 language that dynamically interact with the CFX/ANSYS fluid dynamic software. Since a structural elastic linear model is employed to evaluate elastomer deformations, it is not necessary to use any CAE package for structural analysis. However, an initial proposal for dynamic simulation using hyperelastic models through ANSYS software is also presented in this research. Validation of the results produced with the present methodology (mesh generation, flow simulation in metallic PCPs and simulation of fluid-structure interaction in elastomeric PCPs) is obtained through comparison with experimental results reported by the literature. It is expected that the development and application of such a computational model may provide better details of the dynamics of the flow within metallic and elastomeric PCPs, so that better control systems may be implemented in the artificial elevation area by PCP

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work aims to show a possible relationship between the use of the History of Mathematics and Information and Communication Technologies (TIC) in teaching Mathematics through activities that use geometric constructions of the “Geometry of the Compass” (1797) by Lorenzo Mascheroni (1750-1800). For this, it was performed a qualitative research characterized by an historical exploration of bibliographical character followed by an empirical intervention based on use of the History of Mathematics combined with TIC through Mathematical Investigation. Thus, studies were performed in papers dealing with the topic, as well as a survey to highlight problems and /or episodes of the history of mathematics that can be solved with the help of TIC, allowing the production of a notebook of activities addressing the resolution of historical problems in a computer environment. In this search, we came across the problems of geometry that are presented by Mascheroni stated previously in the work that we propose solutions and investigations using GeoGebra software. The research resulted in the elaboration of an educational product, a notebook of activities, which was structure to allow during its implementation, students can conduct historical and/or Mathematics research, therefore, we present the procedures for realization of each construction, followed at some moments by original solution of the work. At the same time, we encourage students to investigate/reflect its construction (GeoGebra), in addition to making comparisons with the solution Mascheroni. This notebook was applied to two classes of the course of Didactics of Mathematics I (MAT0367) Course in Mathematics UFRN in 2014. Knowing the existence of some unfavorable arguments regarding the use of history of mathematics, such as loss of time, it was found that this factor can be mitigated with the aid of computational resource, because we can make checks using only the dynamism of and software without repeating the construction. It is noteworthy that the minimized time does not mean loss of reflection or maturation of ideas, when we adopted the process of historical and/or Mathematics Investigation

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The understanding of the occurrence and flow of groundwater in the subsurface is of fundamental importance in the exploitation of water, just like knowledge of all associated hydrogeological context. These factors are primarily controlled by geometry of a certain pore system, given the nature of sedimentary aquifers. Thus, the microstructural characterization, as the interconnectivity of the system, it is essential to know the macro properties porosity and permeability of reservoir rock, in which can be done on a statistical characterization by twodimensional analysis. The latter is being held on a computing platform, using image thin sections of reservoir rock, allowing the prediction of the properties effective porosity and hydraulic conductivity. For Barreiras Aquifer to obtain such parameters derived primarily from the interpretation of tests of aquifers, a practice that usually involves a fairly complex logistics in terms of equipment and personnel required in addition to high cost of operation. Thus, the analysis and digital image processing is presented as an alternative tool for the characterization of hydraulic parameters, showing up as a practical and inexpensive method. This methodology is based on a flowchart work involving sampling, preparation of thin sections and their respective images, segmentation and geometric characterization, three-dimensional reconstruction and flow simulation. In this research, computational image analysis of thin sections of rocks has shown that aquifer storage coefficients ranging from 0,035 to 0,12 with an average of 0,076, while its hydrogeological substrate (associated with the top of the carbonate sequence outcropping not region) presents effective porosities of the order of 2%. For the transport regime, it is evidenced that the methodology presents results below of those found in the bibliographic data relating to hydraulic conductivity, mean values of 1,04 x10-6 m/s, with fluctuations between 2,94 x10-6 m/s and 3,61x10-8 m/s, probably due to the larger scale study and the heterogeneity of the medium studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oil production and exploration techniques have evolved in the last decades in order to increase fluid flows and optimize how the required equipment are used. The base functioning of Electric Submersible Pumping (ESP) lift method is the use of an electric downhole motor to move a centrifugal pump and transport the fluids to the surface. The Electric Submersible Pumping is an option that has been gaining ground among the methods of Artificial Lift due to the ability to handle a large flow of liquid in onshore and offshore environments. The performance of a well equipped with ESP systems is intrinsically related to the centrifugal pump operation. It is the pump that has the function to turn the motor power into Head. In this present work, a computer model to analyze the three-dimensional flow in a centrifugal pump used in Electric Submersible Pumping has been developed. Through the commercial program, ANSYS® CFX®, initially using water as fluid flow, the geometry and simulation parameters have been defined in order to obtain an approximation of what occurs inside the channels of the impeller and diffuser pump in terms of flow. Three different geometry conditions were initially tested to determine which is most suitable to solving the problem. After choosing the most appropriate geometry, three mesh conditions were analyzed and the obtained values were compared to the experimental characteristic curve of Head provided by the manufacturer. The results have approached the experimental curve, the simulation time and the model convergence were satisfactory if it is considered that the studied problem involves numerical analysis. After the tests with water, oil was used in the simulations. The results were compared to a methodology used in the petroleum industry to correct viscosity. In general, for models with water and oil, the results with single-phase fluids were coherent with the experimental curves and, through three-dimensional computer models, they are a preliminary evaluation for the analysis of the two-phase flow inside the channels of centrifugal pump used in ESP systems

Relevância:

20.00% 20.00%

Publicador:

Resumo:

LINS, Filipe C. A. et al. Modelagem dinâmica e simulação computacional de poços de petróleo verticais e direcionais com elevação por bombeio mecânico. In: CONGRESSO BRASILEIRO DE PESQUISA E DESENVOLVIMENTO EM PETRÓLEO E GÁS, 5. 2009, Fortaleza, CE. Anais... Fortaleza: CBPDPetro, 2009.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This Masters Degree dissertation seeks to make a comparative study of internal air temperature data, simulated through the thermal computer application DesignBuilder 1.2, and data registered in loco through HOBO® Temp Data Logger, in a Social Housing Prototype (HIS), located at the Central Campus of the Federal University of Rio Grande do Norte UFRN. The prototype was designed and built seeking strategies of thermal comfort recommended for the local climate where the study was carried out, and built with panels of cellular concrete by Construtora DoisA, a collaborator of research project REPESC Rede de Pesquisa em Eficiência Energética de Sistemas Construtivos (Research Network on Energy Efficiency of Construction Systems), an integral part of Habitare program. The methodology employed carefully examined the problem, reviewed the bibliography, analyzing the major aspects related to computer simulations for thermal performance of buildings, such as climate characterization of the region under study and users thermal comfort demands. The DesignBuilder 1.2 computer application was used as a simulation tool, and theoretical alterations were carried out in the prototype, then they were compared with the parameters of thermal comfort adopted, based on the area s current technical literature. Analyses of the comparative studies were performed through graphical outputs for a better understanding of air temperature amplitudes and thermal comfort conditions. The data used for the characterization of external air temperature were obtained from the Test Reference Year (TRY), defined for the study area (Natal-RN). Thus the author also performed comparative studies for TRY data registered in the years 2006, 2007 and 2008, at weather station Davis Precision Station, located at the Instituto Nacional de Pesquisas Espaciais INPE-CRN (National Institute of Space Research), in a neighboring area of UFRN s Central Campus. The conclusions observed from the comparative studies performed among computer simulations, and the local records obtained from the studied prototype, point out that the simulations performed in naturally ventilated buildings is quite a complex task, due to the applications limitations, mainly owed to the complexity of air flow phenomena, the influence of comfort conditions in the surrounding areas and climate records. Lastly, regarding the use of the application DesignBuilder 1.2 in the present study, one may conclude that it is a good tool for computer simulations. However, it needs some adjustments to improve reliability in its use. There is a need for continued research, considering the dedication of users to the prototype, as well as the thermal charges of the equipment, in order to check sensitivity

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural air ventilation is the most import passive strategy to provide thermal comfort in hot and humid climates and a significant low energy strategy. However, the natural ventilated building requires more attention with the architectural design than a conventional building with air conditioning systems, and the results are less reliable. Therefore, this thesis focuses on softwares and methods to predict the natural ventilation performance from the point of view of the architect, with limited resource and knowledge of fluid mechanics. A typical prefabricated building was modelled due to its simplified geometry, low cost and occurrence at the local campus. Firstly, the study emphasized the use of computational fluid dynamics (CFD) software, to simulate the air flow outside and inside the building. A series of approaches were developed to make the simulations possible, compromising the results fidelity. Secondly, the results of CFD simulations were used as the input of an energy tool, to simulate the thermal performance under different rates of air renew. Thirdly, the results of temperature were assessed in terms of thermal comfort. Complementary simulations were carried out to detail the analyses. The results show the potentialities of these tools. However the discussions concerning the simplifications of the approaches, the limitations of the tools and the level of knowledge of the average architect are the major contribution of this study

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work focuses on the creation and applications of a dynamic simulation software in order to study the hard metal structure (WC-Co). The technological ground used to increase the GPU hardware capacity was Geforce 9600 GT along with the PhysX chip created to make games more realistic. The software simulates the three-dimensional carbide structure to the shape of a cubic box where tungsten carbide (WC) are modeled as triangular prisms and truncated triangular prisms. The program was proven effective regarding checking testes, ranging from calculations of parameter measures such as the capacity to increase the number of particles simulated dynamically. It was possible to make an investigation of both the mean parameters and distributions stereological parameters used to characterize the carbide structure through cutting plans. Grounded on the cutting plans concerning the analyzed structures, we have investigated the linear intercepts, the intercepts to the area, and the perimeter section of the intercepted grains as well as the binder phase to the structure by calculating the mean value and distribution of the free path. As literature shows almost consensually that the distribution of the linear intercepts is lognormal, this suggests that the grain distribution is also lognormal. Thus, a routine was developed regarding the program which made possible a more detailed research on this issue. We have observed that it is possible, under certain values for the parameters which define the shape and size of the Prismatic grain to find out the distribution to the linear intercepts that approach the lognormal shape. Regarding a number of developed simulations, we have observed that the distribution curves of the linear and area intercepts as well as the perimeter section are consistent with studies on static computer simulation to these parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As most current studies, reinforced plastics have been, in recent years, a viable alternative in building structural elements of medium and large, since the lightness accompanied by high performance possible. The design of hybrid polymer composites (combination of different types of reinforcements) may enable structural applications thereof, facing the most severe service conditions. Within this class of composite materials, reinforced the underlying tissues hybrid high performance are taking space when your application requires high load bearing and high rigidity. The objective of this research work is to study the challenges in designing these fabrics bring these materials as to its mechanical characterization and fracture mechanisms involved. Some parameters associated with the process and / or form of hybridization stand out as influential factors in the final performance of the material such as the presence of anisotropy, so the fabric weave, the process of making the same, normative geometry of the specimens, among others. This sense, four laminates were developed based hybrid reinforcement fabrics involving AS4 carbon fiber, kevlar and glass 49-E as the matrix epoxy vinyl ester resin (DERAKANE 411-350). All laminates were formed each with four layers of reinforcements. Depending on the hybrid fabric, all the influencing factors mentioned above have been studied for laminates. All laminates were manufactured industrially used being the lamination process manual (hand-lay-up). All mechanical characterization and study of the mechanism of fracture (fracture mechanics) was developed for laminates subjected to uniaxial tensile test, bending in three and uniaxial compression. The analysis of fracture mechanisms were held involving the macroscopic, optical microscopy and scanning electron microscopy

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work proposes an environment for programming programmable logic controllers applied to oil wells with BCP type method of artificially lifting. The environment will have an editor based in the diagram of sequential functions for programming of PLCs. This language was chosen due to the fact of being high-level and accepted by the international standard IEC 61131-3. The use of these control programs in real PLC will be possible with the use of an intermediate level of language based on XML specification PLCopen T6 XML. For the testing and validation of the control programs, an area should be available for viewing variables obtained through communication with a real PLC. Thus, the main contribution of this work is to develop a computational environment that allows: modeling, testing and validating the controls represented in SFC and applied in oil wells with BCP type method of artificially lifting

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work aims presenting the development of a model and computer simulation of a sucker rod pumping system. This system take into account the well geometry, the flow through the tubing, the dynamic behavior of the rod string and the use of a induction motor model. The rod string were modeled using concentrated parameters, allowing the use of ordinary differential equations systems to simulate it s behavior

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Knowledge of the native prokaryotes in hazardous locations favors the application of biotechnology for bioremediation. Independent strategies for cultivation and metagenomics contribute to further microbiological knowledge, enabling studies with non-cultivable about the "native microbiological status and its potential role in bioremediation, for example, of polycyclic aromatic hydrocarbons (HPA's). Considering the biome mangrove interface fragile and critical bordering the ocean, this study characterizes the native microbiota mangrove potential biodegradability of HPA's using a biomarker for molecular detection and assessment of bacterial diversity by PCR in areas under the influence of oil companies in the Basin Petroleum Geology Potiguar (BPP). We chose PcaF, a metabolic enzyme, to be the molecular biomarker in a PCR-DGGE detection of prokaryotes that degrade HPA s. The PCR-DGGE fingerprints obtained from Paracuru-CE, Fortim-CE and Areia Branca-RN samples revealed the occurrence of fluctuations of microbial communities according to the sampling periods and in response to the impact of oil. In the analysis of microbial communities interference of the oil industry, in Areia Branca-RN and Paracuru-CE was observed that oil is a determinant of microbial diversity. Fortim-CE probably has no direct influence with the oil activity. In order to obtain data for better understanding the transport and biodegradation of HPA's, there were conducted in silico studies with modeling and simulation from obtaining 3-D models of proteins involved in the degradation of phenanthrene in the transport of HPA's and also getting the 3-D model of the enzyme PcaF used as molecular marker in this study. Were realized docking studies with substrates and products to a better understanding about the transport mechanism and catalysis of HPA s