86 resultados para Flotation. Photo-fenton. Surfactant. Produced water. Effluent
Resumo:
During production of oil and gas, there is also the production of an aqueous effluent called produced water. This byproduct has in its composition salts, organic compounds, gases and heavy metals. This research aimed to evaluate the integration of processes Induced Air Flotation (IAF) and photo-Fenton for reducing the Total Oils and Greases (TOG) present in produced water. Experiments were performed with synthetic wastewater prepared from the dispersion of crude oil in saline solution. The system was stirred for 25 min at 33,000 rpm and then allowed to stand for 50 min to allow free oil separation. The initial oil concentration in synthetic wastewater was 300 ppm and 35 ppm for the flotation and the photo-Fenton steps, respectively. These values of initial oil concentration were established based on average values of primary processing units in Potiguar Basin. The processes were studied individually and then the integration was performed considering the best experimental conditions found in each individual step. The separation by flotation showed high removal rate of oil with first-order kinetic behavior. The flotation kinetics was dependent on both the concentration and the hydrophilic-lipophilic balance (HLB) of the surfactant. The best result was obtained for the concentration of 4.06.10-3 mM (k = 0.7719 min-1) of surfactant EO 2, which represents 86% of reduction in TOG after 4 min. For series of surfactants evaluated, the separation efficiency was found to be improved by the use of surfactants with low HLB. Regarding the TOG reduction step by photo-Fenton, the largest oil removal reached was 84% after 45 min of reaction, using 0.44 mM and 10 mM of ferrous ions and hydrogen peroxide, respectively. The best experimental conditions encountered in the integrated process was 10 min of flotation followed by 45 min of photo-Fenton with overall TOG reduction of 99%, which represents 5 ppm of TOG in the treated effluent. The integration of processes flotation and photo-Fenton proved to be highly effective in reducing TOG of produced water in oilfields
Resumo:
The generation of wastes in most industrial process is inevitable. In the petroleum industry, one of the greatest problems for the environment is the huge amount of produced water generated in the oil fields. This wastewater is a complex mixture and present great amounts. These effluents can be hazardous to the environmental without adequate treatment. This research is focused in the analysis of the efficiencies of the flotation and photo-oxidation processes to remove and decompose the organic compounds present in the produced water. A series of surfactants derivated from the laurilic alcohol was utilized in the flotation to promote the separation. The experiments have been performed with a synthetic wastewater, carefully prepared with xylene. The experimental data obtained using flotation presented a first order kinetic, identified by the quality of the linear data fitting. The best conditions were found at 0.029 g.L-1 for the surfactant EO 7, 0.05 g.L-1 for EO 8, 0.07 g.L-1 for EO 9, 0.045 g.L-1 for EO 10 and 0.08 g.L-1 for EO 23 with the following estimated kinetic constants: 0.1765, 0.1325, 0.1210, 0.1531 and 0.1699 min-1, respectively. For the series studied, the most suitable surfactant was the EO 7 due to the lower reagent onsumption, higher separation rate constant and higher removal efficiency of xylene in the aqueous phase (98%). Similarly to the flotation, the photo-Fenton process shows to be efficient for degradation of xylene and promoting the mineralization of the organic charge around 90% and 100% in 90 min
Resumo:
The generation of wastes in most industrial process is inevitable. In the petroleum industry, one of the greatest problems for the environment is the huge amount of produced water generated in the oil fields. This wastewater is a complex mixture and present great amounts. These effluents can be hazardous to the environmental without adequate treatment. This research is focused in the analysis of the efficiencies of the flotation and photo-oxidation processes to remove and decompose the organic compounds present in the produced water. A series of surfactants derivated from the laurilic alcohol was utilized in the flotation to promote the separation. The experiments have been performed with a synthetic wastewater, carefully prepared with xylene. The experimental data obtained using flotation presented a first order kinetic, identified by the quality of the linear data fitting. The best conditions were found at 0.029 g.L-1 for the surfactant EO 7, 0.05 g.L-1 for EO 8, 0.07 g.L-1 for EO 9, 0.045 g.L-1 for EO 10 and 0.08 g.L-1 for EO 23 with the following estimated kinetic constants: 0.1765, 0.1325, 0.1210, 0.1531 and 0.1699 min-1, respectively. For the series studied, the most suitablesurfactant was the EO 7 due to the lower reagent consumption, higher separation rate constant and higher removal efficiency of xylene in the aqueous phase (98%). Similarly to the flotation, the photo-Fenton process shows to be efficient for degradation of xylene and promoting the mineralization of the organic charge around 90% and 100% in 90 min
Resumo:
Petroleum can be associated or not with natural gas, but in both cases water is always present in its formation. The presence of water causes several problems, such as the difficulty of removing the petroleum from the reservoir rock and the formation of waterin-oil and oil-in-water emulsions. The produced water causes environmental problems, which should be solved to reduce the effect of petroleum industry in the environment. The main objective of this work is to remove simultaneously from the produced water the dispersed petroleum and dissolved metals. The process is made possible through the use of anionic surfactants that with its hydrophilic heads interacts with ionized metals and with its lipophilic tails interacts with the oil. The studied metals were: calcium, magnesium, barium, and cadmium. The surfactants used in this research were derived from: soy oil, sunflower oil, coconut oil, and a soap obtained from a mixture of 5wt.% coconut oil and 95wt.% animal fat. It was used a sample of produced water from Terminal de São Sebastião, São Paulo. As the concentration of the studied metals in produced water presented values close to 300 mg/L, it was decided to use this concentration as reference for the development of this research. Molecular absorption and atomic absorption spectroscopy were used to determine petroleum and metals concentrations in the water sample, respectively. A constant pressure filtration system was used to promote the separation of solid and liquid phases. To represent the behavior of the studied systems it was developed an equilibrium model and a mathematical one. The obtained results showed that all used surfactants presented similar behavior with relation to metals extraction, being selected the surfactant derived from soy oil for this purpose. The values of the partition coefficients between the solid and liquid phases " D " for the studied metals varied from 0.2 to 1.1, while the coefficients for equilibrium model " K " varied from 0.0002 and 0.0009. The removal percentile for oil with all metals associated was near 100%, showing the efficiency of the process
Resumo:
The aim of this work is the treatment of produced water from oil by using electrochemical technology. Produced water is a major waste generated during the process of exploration and production in the oil industry. Several approaches are being studied aiming at the treatment of this effluent; among them can be cited the biological process and chemical treatments such as advanced oxidation process and electrochemical treatments (electrooxidation, electroflotation, electrocoagulation, electrocoagulation). This work studies the application of electrochemical technology in the treatment of the synthetic produced water effluent through the action of the electron, in order to remove or transform the toxic and harmful substances from the environment by redox reactions in less toxic substances. For this reason, we used a synthetic wastewater, containing a mixture H2SO4 0,5M and 16 HPAs, which are: naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo (a) anthracene, chrysene, benzo(b)fluoranthene, benzo(k) fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene, dibenzo(a, h)anthracene, benzo(g, h, i)perylene. Bulk electrochemical oxidation experiments were performed using a batch electrochemical reactor containing a pair of parallel electrodes, coupled with a power supply using a magnetic stirrer for favoring the transfer mass control. As anodic material was used, a Dimensionally Stable Anode (DSA) of Ti/Pt, while as cathode was used a Ti electrode. Several samples were collected at specific times and after that, the analysis of these samples were carried out by using Gas Chromatography Coupled to Mass Spectrometry (GC - MS) in order to determine the percentage of removal. The results showed that it was possible to achieve the removal of HPAs about 80% (in some cases, more than 80%). In addition, as an indicator of the economic feasibility of electrochemical treatment the energy consumption was analyzed for each hour of electrolysis, and based on the value kWh charged by ANEEL, the costs were estimated. Thus, the treatment costs of this research were quite attractive
Resumo:
In this work, the treatment of wastewater from the textile industry, containing dyes as Yellow Novacron (YN), Red Remazol BR (RRB) and Blue Novacron CD (NB), and also, the treatment of wastewater from petrochemical industry (produced water) were investigated by anodic oxidation (OA) with platinum anodes supported on titanium (Ti/Pt) and boron-doped diamond (DDB). Definitely, one of the main parameters of this kind of treatment is the type of electrocatalytic material used, since the mechanisms and products of some anodic reactions depend on it. The OA of synthetic effluents containing with RRB, NB and YN were investigated in order to find the best conditions for the removal of color and organic content of the dye. According to the experimental results, the process of OA is suitable for decolorization of wastewaters containing these textile dyes due to electrocatalytic properties of DDB and Pt anodes. Removal of the organic load was more efficient at DDB, in all cases; where the dyes were degraded to aliphatic carboxylic acids at the end of the electrolysis. Energy requirements for the removal of color during OA of solutions of RRB, NB and YN depends mainly on the operating conditions, for example, RRB passes of 3.30 kWh m-3 at 20 mA cm-2 for 4.28 kWh m-3 at 60 mA cm-2 (pH = 1); 15.23 kWh m-3 at 20 mA cm-2 to 24.75 kWh m-3 at 60 mA cm-2 (pH 4.5); 10.80 kWh m-3 at 20 mA cm-2 to 31.5 kWh m-3 at 60 mA cm-2 (pH = 8) (estimated data for volume of treated effluent). On the other hand, in the study of OA of produced water effluent generated by petrochemical industry, galvanostatic electrolysis using DDB led to the complete removal of COD (98%), due to large amounts of hydroxyl radicals and peroxodisulphates generated from the oxidation of water and sulfates in solution, respectively. Thus, the rate of COD removal increases with increasing applied current density (15-60 mAcm-2 ). Moreover, at Pt electrode, approximately 50% removal of the organic load was achieved by applying from 15 to 30 mAcm-2 while 80% of COD removal was achieved for 60 mAcm-2 . Thus, the results obtained in the application of this technology were satisfactory depending on the electrocatalytic materials and operating conditions used for removal of organic load (petrochemical and textile effluents) as well as for the removal of color (in the case of textile effluents). Therefore, the applicability of electrochemical treatment can be considered as a new alternative like pretreatment or treatment of effluents derived from textiles and petrochemical industries.
Resumo:
In the petroleum industry, water is always present in the reservoir formation together with petroleum and natural gas and this fact provokes the production of water with petroleum, resulting in a great environmental impact. Several methods can be applied for treatment of oily waters, such as: gravitational vases, granulated media filtration systems, flotation process, centrifugation process and the use of hydrocyclones, which can also be used in a combined way. However, the flotation process has showed a great efficiency as compared with other methods, because these methods do not remove great part of the emulsified oil. In this work was investigated the use of surfactants derived from vegetable oils, OSS and OGS, as collectors, using the flotation process in a glass column with a porous plate filter in its base for the input of the gaseous steam. For this purpose, oil/water emulsions were prepared using mechanical stirring, with concentrations around 300 ppm. The air flow rate was set at 700 cm3/min and the porous plate filter used for the generation of the air bubbles has pore size varying from 16 to 40 Pm. The column operated at constant volume (1500mL). A new methodology has been developed to collect the samples, where, instead of collecting the water phase, it was collected the oil phase removed by the process in the top of the flotation column. It has been observed that it is necessary to find an optimum surfactant concentration to achieve enhanced removal efficiency. Being for OSS 1.275 mmol/L and for OGS 0.840 mmol/L, with removal efficiencies of 93% and 99%, respectively, using synthetic solutions. For the produced water, the removal in these concentrations was 75% for OSS and 65% for OGS. It is possible to remove oil from water in a flotation process using surfactants of high HLB, fact that is against the own definition of HLB (Hydrophile-Lipophile Balance). The interfacial tension is an important factor in the oil removal process using a flotation process, because it has direct interference in the coalescence of the oil drops. The spreading of the oil of the air bubble should be considered in the process, and for the optimum surfactant concentrations it reached a maximum value. The removal kinetics for the flotation process using surfactants in the optimum concentration has been adjusted according to a first order model, for synthetic water as for the produced water.
Resumo:
Photo-oxidation processes of toxic organic compounds have been widely studied. This work seeks the application of the photo-Fenton process for the degradation of hydrocarbons in water. The gasoline found in the refinery, without additives and alcohol, was used as the model pollutant. The effects of the concentration of the following substances have been properly evaluated: hydrogen peroxide (100-200 mM), iron ions (0.5-1 mM) and sodium chloride (200 2000 ppm). The experiments were accomplished in reactor with UV lamp and in a falling film solar reactor. The photo-oxidation process was monitored by measurements of the absorption spectra, total organic carbon (TOC) and chemical oxygen demand (COD). Experimental results demonstrated that the photo-Fenton process is feasible for the treatment of wastewaters containing aliphatic hydrocarbons, inclusive in the presence of salts. These conditions are similar to the water produced by the petroleum fields, generated in the extraction and production of petroleum. A neural network model of process correlated well the observed data for the photooxidation process of hydrocarbons
Resumo:
The treatment of oil produced water and its implications are continually under investigation and several questions are related to this subject. In the Northeast Region Brazil, the onshore reservoirs are, in its majority, mature oil fields with high production of water. As this oil produced water has high levels of oil, it cannot be directly discarded into the environment because it represents a risk for contamination of soil, water, and groundwater, or even may cause harm to living bodies. Currently, polyelectrolytes that promote the coalescence of the oil droplets are used to remove the dispersed oil phase, enhancing the effectiveness of the flotation process. The non-biodegradability and high cost of polyelectrolytes are limiting factors for its application. On this context, it is necessary to develop studies for the search of more environmentally friendly products to apply in the flotation process. In this work it is proposed the modeling of the flotation process, in a glass column, using surfactants derived from vegetal oils to replace the polyelectrolytes, as well as to obtain a model that represents the experimental data. In addition, it was made a comparative study between the models described in the literature and the one developed in this research. The obtained results showed that the developed model presented high correlation coefficients when fitting the experimental data (R2 > 0.98), thus proving its efficiency in modeling the experimental data.
Resumo:
Innovative technologies using surfactant materials have applicability in several industrial fields, including petroleum and gas areas. This study seeks to investigate the use of a surfactant derived from coconut oil (SCO saponified coconut oil) in the recovery process of organic compounds that are present in oily effluents from petroleum industry. For this end, experiments were accomplished in a column of small dimension objectifying to verify the influence of the surfactant SCO in the efficiency of oil removal. This way, they were prepared emulsions with amount it fastens of oil (50, 100, 200 and 400 ppm), being determined the great concentrations of surfactant for each one of them. Some rehearsals were still accomplished with produced water of the industry of the petroleum to compare the result with the one of the emulsions. According to the experiments, it was verified that an increase of the surfactant concentration does not implicate in a greater oil removal. The separation process use gaseous bubbles formed when a gas stream pass a liquid column, when low surfactant concentrations are used, it occurs the coalescence of the dispersed oil droplets and their transport to the top of the column, forming a new continuous phase. Such surfactants lead to a gas-liquid interface saturation, depending on the used surfactant concentration, affecting the flotation process and influencing in the removal capacity of the oily dispersed phase. A porous plate filter, with pore size varying from 40 to 250 mm, was placed at the base of the column to allow a hydrodynamic stable operation. During the experimental procedures, the operating volume of phase liquid was held constant and the rate of air flow varied in each experiment. The resulting experimental of the study hydrodynamic demonstrated what the capturing of the oil was influenced by diameter of the bubbles and air flow. With the increase flow of 300 about to 900 cm3.min-1, occurred an increase in the removal of oil phase of 44% about to 66% and the removal kinetic of oil was defined as a reaction of 1° order
Resumo:
Increasing concern with the environment, in addition to strict laws, has induced the industries to find altenatives to the treatment of their wastes. Actually, the oil industry has sought solutions to overcome a big environmental problem, i.e., oil field produced water being discharged to the sea. These effluents have organic compounds dissolved, such as polycyclic aromatic hydrocarbons, phenols, benzene, toluene, ethylbenzene and xylenes (BTEX). These compounds are difficult to be removed and have high toxicity. The advanced oxidation processes - AOP are effective to degradation of these organic compounds, because they generate hydroxyl radicals with high potential of oxidation. This work includes the reactor photochemical development applied in the photodegradation treatment (by photo-Fenton process) of wastewaters containing organic compounds dissolved, aiming at treatment and recovery the oil field produced water. The studied reactor allowed the evaluation of two ultraviolet radiation sources that is the main factor to describe the feasibility of the photo¬Fenton treatment, i.e., sun and black light fluorescent lamps, and other relevant variables the process: concentration of reagents, irradiated area and also various reactor configurations to maximize the use of radiation. The organic matter degradation was verified with samples collected during the experimental and analyzed with a total organic carbon analyzer (TOC), which expressed the results in terms of mgC/L. The solar radiation was more effective than radiation from the lamps. it's an important factor for the operation costs cutting. Preliminary experiments applied to oil field produced water treatment have showed satisfactory results, reducing up to 76 % of organic matter
Resumo:
Increasing concern with the environment, in addition to strict laws, has induced the industries to find alternatives to the treatment of their wastes. Actually, the oil industry has sought solutions to overcome a big environmental problem, i.e., oil field produced water being discharged to the sea. These effluents have organic compounds dissolved, such as polycyclic aromatic hydrocarbons, phenols, benzene, toluene, ethylbenzene and xylenes (BTEX). These compounds are difficult to be removed and have high toxicity. The advanced oxidation processes - AOP are effective to degradation of these organic compounds, because they generate hydroxyl radicals with high potential of oxidation. This work includes the reactor photochemical development applied in the photodegradation treatment (by photo-Fenton process) of wastewaters containing organic compounds dissolved, aiming at treatment and recovery the oil field produced water. The studied reactor allowed the evaluation of two ultraviolet radiation sources that is the main factor to describe the feasibility of the photo- Fenton treatment, i.e., sun and black light fluorescent lamps, and other relevant variables the process: concentration of reagents, irradiated area and also various reactor configurations to maximize the use of radiation. The organic matter degradation was verified with samples collected during the experimental and analyzed with a total organic carbon analyzer (TOC), which expressed the results in terms of mgC/L. The solar radiation was more effective than radiation from the lamps. It's an important factor for the operation costs cutting. Preliminary experiments applied to oil field produced water treatment have showed satisfactory results, reducing up to 76 % of organic matter
Resumo:
The petroleum production is associated to the produced water, which has dispersed and dissolved materials that damage not only the environment, but also the petroleum processing units. This study aims at the treatment of produced water focusing mainly on the removal of metals and oil and using this treated water as raw material for the production of sodium carbonate. Initially, it was addressed the removal of the following divalent metals: calcium, magnesium, barium, zinc, copper, iron, and cadmium. For this purpose, surfactants derived from vegetable oils, such as coconut oil, soybean oil, and sunflower oil, were used. The investigation showed that there is a stoichiometric relationship between the metals removed from the produced water and the surfactants used in the process of metals removal. It was also developed a model that correlates the hydrolysis constant of saponified coconut oil with the metal distribution between the resulting stages of the proposed process, flocs and aqueous phases, and relating the results with the pH of the medium. The correlation coefficient obtained was 0.963. Next, the process of producing washing soda (prefiro soda ahs ou sodium carbonate) started. The resulting water from the various treatment approaches from petroleum production water was used. During this stage of the research, it was observed that the surfactant assisted in the produced water treatment, by removing some metals and the dispersed oil entirety. The yield of sodium carbonate production was approximately 80%, and its purity was around 95%. It was also assessed, in the production of sodium carbonate, the influence of the type of reactor, using a continuous reactor and a batch reactor. These tests showed that the process with continuous reactor was not as efficient as the batch process. In general, it can be concluded that the production of sodium carbonate from water of oil production is a feasible process, rendering an effluent that causes a great environmental impact a raw material with large scale industrial use
Resumo:
Innovative technologies using surfactant materials have applicability in several industrial fields, including petroleum and gas areas. This study seeks to investigate the use of a surfactant derived from coconut oil (SCO saponified coconut oil) in the recovery process of organic compounds that are present in oily effluents from petroleum industry. For this end, experiments were accomplished in a column of small dimension objectifying to verify the influence of the surfactant SCO in the efficiency of oil removal. This way, they were prepared emulsions with amount it fastens of oil (50, 100, 200 and 400 ppm), being determined the great concentrations of surfactant for each one of them. Some rehearsals were still accomplished with produced water of the industry of the petroleum to compare the result with the one of the emulsions. According to the experiments, it was verified that an increase of the surfactant concentration does not implicate in a greater oil removal. The separation process use gaseous bubbles formed when a gas stream pass a liquid column, when low surfactant concentrations are used, it occurs the coalescence of the dispersed oil droplets and their transport to the top of the column, forming a new continuous phase. Such surfactants lead to a gas-liquid interface saturation, depending on the used surfactant concentration, affecting the flotation process and influencing in the removal capacity of the oily dispersed phase. A porous plate filter, with pore size varying from 40 to 250 mm, was placed at the base of the column to allow a hydrodynamic stable operation. During the experimental procedures, the operating volume of phase liquid was held constant and the rate of air flow varied in each experiment. The resulting experimental of the study hydrodynamic demonstrated what the capturing of the oil was influenced by diameter of the bubbles and air flow. With the increase flow of 300 about to 900 cm3.min-1, occurred an increase in the removal of oil phase of 44% about to 66% and the removal kinetic of oil was defined as a reaction of 1° order.
Resumo:
The principal effluent in the oil industry is the produced water, which is commonly associated to the produced oil. It presents a pronounced volume of production and it can be reflected on the environment and society, if its discharge is unappropriated. Therefore, it is indispensable a valuable careful to establish and maintain its management. The traditional treatment of produced water, usualy includes both tecniques, flocculation and flotation. At flocculation processes, there are traditional floculant agents that aren’t well specified by tecnichal information tables and still expensive. As for the flotation process, it’s the step in which is possible to separate the suspended particles in the effluent. The dissolved air flotation (DAF) is a technique that has been consolidating economically and environmentally, presenting great reliability when compared with other processes. The DAF is presented as a process widely used in various fields of water and wastewater treatment around the globe. In this regard, this study was aimed to evaluate the potential of an alternative natural flocculant agent based on Moringa oleifera to reduce the amount of oil and grease (TOG) in produced water from the oil industry by the method of flocculation/DAF. the natural flocculant agent was evaluated by its efficacy, as well as its efficiency when compared with two commercial flocculant agents normally used by the petroleum industry. The experiments were conducted following an experimental design and the overall efficiencies for all flocculants were treated through statistical calculation based on the use of STATISTICA software version 10.0. Therefore, contour surfaces were obtained from the experimental design and were interpreted in terms of the response variable removal efficiency TOG (total oil and greases). The plan still allowed to obtain mathematical models for calculating the response variable in the studied conditions. Commercial flocculants showed similar behavior, with an average overall efficiency of 90% for oil removal, however it is the economical analysis the decisive factor to choose one of these flocculant agents to the process. The natural alternative flocculant agent based on Moringa oleifera showed lower separation efficiency than those of commercials one (average 70%), on the other hand this flocculant causes less environmental impacts and it´s less expensive