22 resultados para Estimativa de parâmetro
Resumo:
The recent astronomical observations indicate that the universe has null spatial curvature, is accelerating and its matter-energy content is composed by circa 30% of matter (baryons + dark matter) and 70% of dark energy, a relativistic component with negative pressure. However, in order to built more realistic models it is necessary to consider the evolution of small density perturbations for explaining the richness of observed structures in the scale of galaxies and clusters of galaxies. The structure formation process was pioneering described by Press and Schechter (PS) in 1974, by means of the galaxy cluster mass function. The PS formalism establishes a Gaussian distribution for the primordial density perturbation field. Besides a serious normalization problem, such an approach does not explain the recent cluster X-ray data, and it is also in disagreement with the most up-to-date computational simulations. In this thesis, we discuss several applications of the nonextensive q-statistics (non-Gaussian), proposed in 1988 by C. Tsallis, with special emphasis in the cosmological process of the large structure formation. Initially, we investigate the statistics of the primordial fluctuation field of the density contrast, since the most recent data from the Wilkinson Microwave Anisotropy Probe (WMAP) indicates a deviation from gaussianity. We assume that such deviations may be described by the nonextensive statistics, because it reduces to the Gaussian distribution in the limit of the free parameter q = 1, thereby allowing a direct comparison with the standard theory. We study its application for a galaxy cluster catalog based on the ROSAT All-Sky Survey (hereafter HIFLUGCS). We conclude that the standard Gaussian model applied to HIFLUGCS does not agree with the most recent data independently obtained by WMAP. Using the nonextensive statistics, we obtain values much more aligned with WMAP results. We also demonstrate that the Burr distribution corrects the normalization problem. The cluster mass function formalism was also investigated in the presence of the dark energy. In this case, constraints over several cosmic parameters was also obtained. The nonextensive statistics was implemented yet in 2 distinct problems: (i) the plasma probe and (ii) in the Bremsstrahlung radiation description (the primary radiation from X-ray clusters); a problem of considerable interest in astrophysics. In another line of development, by using supernova data and the gas mass fraction from galaxy clusters, we discuss a redshift variation of the equation of state parameter, by considering two distinct expansions. An interesting aspect of this work is that the results do not need a prior in the mass parameter, as usually occurs in analyzes involving only supernovae data.Finally, we obtain a new estimate of the Hubble parameter, through a joint analysis involving the Sunyaev-Zeldovich effect (SZE), the X-ray data from galaxy clusters and the baryon acoustic oscillations. We show that the degeneracy of the observational data with respect to the mass parameter is broken when the signature of the baryon acoustic oscillations as given by the Sloan Digital Sky Survey (SDSS) catalog is considered. Our analysis, based on the SZE/X-ray data for a sample of 25 galaxy clusters with triaxial morphology, yields a Hubble parameter in good agreement with the independent studies, provided by the Hubble Space Telescope project and the recent estimates of the WMAP
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
The method "toe-to-heel air injection" (THAITM) is a process of enhanced oil recovery, which is the integration of in-situ combustion with technological advances in drilling horizontal wells. This method uses horizontal wells as producers of oil, keeping vertical injection wells to inject air. This process has not yet been applied in Brazil, making it necessary, evaluation of these new technologies applied to local realities, therefore, this study aimed to perform a parametric study of the combustion process with in-situ oil production in horizontal wells, using a semi synthetic reservoir, with characteristics of the Brazilian Northeast basin. The simulations were performed in a commercial software "STARS" (Steam, Thermal, and Advanced Processes Reservoir Simulator), from CMG (Computer Modelling Group). The following operating parameters were analyzed: air rate, configuration of producer wells and oxygen concentration. A sensitivity study on cumulative oil (Np) was performed with the technique of experimental design, with a mixed model of two and three levels (32x22), a total of 36 runs. Also, it was done a technical economic estimative for each model of fluid. The results showed that injection rate was the most influence parameter on oil recovery, for both studied models, well arrangement depends on fluid model, and oxygen concentration favors recovery oil. The process can be profitable depends on air rate
Resumo:
The development of oil wells drilling requires additional cares mainly if the drilling is in offshore ultra deep water with low overburden pressure gradients which cause low fracture gradients and, consequently, difficult the well drilling by the reduction of the operational window. To minimize, in the well planning phases, the difficulties faced by the drilling in those sceneries, indirect models are used to estimate fracture gradient that foresees approximate values for leakoff tests. These models generate curves of geopressures that allow detailed analysis of the pressure behavior for the whole well. Most of these models are based on the Terzaghi equation, just differentiating in the determination of the values of rock tension coefficient. This work proposes an alternative method for prediction of fracture pressure gradient based on a geometric correlation that relates the pressure gradients proportionally for a given depth and extrapolates it for the whole well depth, meaning that theses parameters vary in a fixed proportion. The model is based on the application of analytical proportion segments corresponding to the differential pressure related to the rock tension. The study shows that the proposed analytical proportion segments reaches values of fracture gradient with good agreement with those available for leakoff tests in the field area. The obtained results were compared with twelve different indirect models for fracture pressure gradient prediction based on the compacting effect. For this, a software was developed using Matlab language. The comparison was also made varying the water depth from zero (onshore wellbores) to 1500 meters. The leakoff tests are also used to compare the different methods including the one proposed in this work. The presented work gives good results for error analysis compared to other methods and, due to its simplicity, justify its possible application
Resumo:
The present study provides a methodology that gives a predictive character the computer simulations based on detailed models of the geometry of a porous medium. We using the software FLUENT to investigate the flow of a viscous Newtonian fluid through a random fractal medium which simplifies a two-dimensional disordered porous medium representing a petroleum reservoir. This fractal model is formed by obstacles of various sizes, whose size distribution function follows a power law where exponent is defined as the fractal dimension of fractionation Dff of the model characterizing the process of fragmentation these obstacles. They are randomly disposed in a rectangular channel. The modeling process incorporates modern concepts, scaling laws, to analyze the influence of heterogeneity found in the fields of the porosity and of the permeability in such a way as to characterize the medium in terms of their fractal properties. This procedure allows numerically analyze the measurements of permeability k and the drag coefficient Cd proposed relationships, like power law, for these properties on various modeling schemes. The purpose of this research is to study the variability provided by these heterogeneities where the velocity field and other details of viscous fluid dynamics are obtained by solving numerically the continuity and Navier-Stokes equations at pore level and observe how the fractal dimension of fractionation of the model can affect their hydrodynamic properties. This study were considered two classes of models, models with constant porosity, MPC, and models with varying porosity, MPV. The results have allowed us to find numerical relationship between the permeability, drag coefficient and the fractal dimension of fractionation of the medium. Based on these numerical results we have proposed scaling relations and algebraic expressions involving the relevant parameters of the phenomenon. In this study analytical equations were determined for Dff depending on the geometrical parameters of the models. We also found a relation between the permeability and the drag coefficient which is inversely proportional to one another. As for the difference in behavior it is most striking in the classes of models MPV. That is, the fact that the porosity vary in these models is an additional factor that plays a significant role in flow analysis. Finally, the results proved satisfactory and consistent, which demonstrates the effectiveness of the referred methodology for all applications analyzed in this study.
Resumo:
The relation between metabolic demand and maximal oxygen consumption during exercise have been investigated in different areas of knowledge. In the health field, the determination of maximal oxygen consumption (VO2max) is considered a method to classify the level of physical fitness or the risk of cardiocirculatory diseases. The accuracy to obtain data provides a better evaluation of functional responses and allows a reduction in the error margin at the moment of risk classification, as well as, at the moment of determination of aerobic exercise work load. In Brasil, the use of respirometry associated to ergometric test became an opition in the cardiorespiratory evaluation. This equipment allows predictions concerning the oxyredutase process, making it possible to identify physiological responses to physical effort as the respiratory threshold. This thesis focused in the development of mathematical models developed by multiple regression validated by the stepwise method, aiming to predict the VO2max based on respiratory responses to physical effort. The sample was composed of a ramdom sample of 181 healthy individuals, men and women, that were randomized to two groups: regression group and cross validation group (GV). The voluntiars were submitted to a incremental treadmill test; objetiving to determinate of the second respiratory threshold (LVII) and the Peak VO2max. Using the método forward addition method 11 models of VO2max prediction in trendmill were developded. No significative differences were found between the VO2max meansured and the predicted by models when they were compared using ANOVA One-Way and the Post Hoc test of Turkey. We concluded that the developed mathematical models allow a prediction of the VO2max of healthy young individuals based on the LVII
Resumo:
This study aims to use a computational model that considers the statistical characteristics of the wind and the reliability characteristics of a wind turbine, such as failure rates and repair, representing the wind farm by a Markov process to determine the estimated annual energy generated, and compare it with a real case. This model can also be used in reliability studies, and provides some performance indicators that will help in analyzing the feasibility of setting up a wind farm, once the power curve is known and the availability of wind speed measurements. To validate this model, simulations were done using the database of the wind farm of Macau PETROBRAS. The results were very close to the real, thereby confirming that the model successfully reproduced the behavior of all components involved. Finally, a comparison was made of the results presented by this model, with the result of estimated annual energy considering the modeling of the distribution wind by a statistical distribution of Weibull
Resumo:
The considered work presents the procedure for evaluation of the uncertainty related to the calibration of flow measurers and to BS&W. It is about a new method of measurement purposed by the conceptual project of the laboratory LAMP, at Universidade Federal do Rio Grande do Norte, that intends to determine the conventional true value of the BS&W from the total height of the liquid column in the auditor tank, hydrostatic pressure exerted by the liquid column, local gravity, specific mass of the water and the specific mass of the oil, and, to determine the flow, from total height of liquid column and transfer time. The calibration uses a automatized system of monitoration and data acquisition of some necessary largnesses to determine of flow and BS&W, allowing a better trustworthiness of through measurements
Resumo:
With the need to deploy management and monitoring systems of natural resources in areas susceptible to environmental degradation, as is the case of semiarid regions, several works have been developed in order to find effective models and technically and economically viable. Therefore, this study aimed to estimate the daily actual evapotranspiration (ETr) through the application of the Surface Energy Balance Algorithm for Land (SEBAL), from remote sensing products, in a semiarid region, Seridó of the Rio Grande do Norte, and do the validation of these estimates using ETr values obtained by the Penman-Monteith (standard method of the Food and Agriculture Organization-FAO). The SEBAL is based on energy balance method, which allows obtaining the vertical latent heat flux (LE) with orbital images and, consequently, of the evapotranspiration through the difference of flows, also vertical, of heat in the soil (G), sensitive heat (H) and radiation balance (Rn). The study area includes the surrounding areas of the Dourado reservoir, located in the Currais Novos/RN city. For the implementation of the algorithm were used five images TM/Landsat-5. The work was divided in three chapters in order to facilitate a better discussion of each part of the SEBAL processing, distributed as follows: first chapter addressing the spatio-temporal variability of the biophysical variables; second chapter dealing with spatio-temporal distribution of instant and daily radiation balance; and the third chapter discussing the heart of the work, the daily actual evapotranspiration estimation and the validation than to the study area
Resumo:
Four areas are known as of frequent usage by Guiana dolphins (Sotalia guianensis) in the south coast of Rio Grande do Norte state, northeast Brazil: Tabatinga, Pipa, Lagoa de Guaraíras and Baia Formosa. This extension of 40 km of shoreline is under increasing anthropogenic impacts due to continuous development of the coastal areas and vessel traffic. The objective of this study was to investigate aspects of population biology and habitat use of the population of Sotalia guianensis in the south coast of Rio Grande do Norte. It was applied the photo-identification technique and posterior methods of capture-recapture for population estimation (POPAN extension in MARK). The distribution, movement and site fidelity of the dolphins were analyzed trough the geographic information system (GIS) and group characteristics and behavior trough non-parametric statistics. Field work was conducted on board a 10m motor vessel from March 2008 to March 2009. Photo-identification effort was 329h with 113h of direct observation of the dolphins. The population estimatives for each area: Tabatinga: 75 (63-92); Pipa 105 (88-129); Lagoa de Guaraíras: 27 (18-54) e Baia Formosa: 112 (89-129) individuals. Total population estimative was: 223 (192 a 297). High site fidelity was detected for only part of the population (<15%) as low site fidelity and transients individuals were also detected (>20%). It was observed frequent movements between Tabatinga, Lagoa de Guaraíras and Pipa, but not Baía Formosa. This suggests a division in two communities along this shore extension: one in Pipa and other in Baía Formosa. Group size was small, most groups with up to 10 dolphins. The areas were use intensively, only in Lagoa de Guaraíras dolphins were not seen in all field trips. Lagoa de Guaraíras is an area used by small groups exclusively for foraging. In Tabatinga and Pipa dolphins concentrated close to the shore, in the inner sector of the area and the main activity is also foraging. Significant larger groups were seen in socializing behavior but there was no difference in group size between the inner and external sectors of the area. The presence of calves and juveniles were significant greater in the inner areas of Tabatinga and Pipa, confirming the hypothesis that these beaches are also used for parental care. In Baia Formosa dolphins concentrated in the outer sector and foraging was also predominant. Significant larger groups were seen in the outer sector, mainly engaged in mixed behaviors of travel/foraging, possibly in some kind of group foraging. Calves and juveniles were significant more present in the outer sector where group size was also larger. In general there was no difference in area usage and period of the day. Sotalia guianensis has characteristics that make the species vulnerable to human activities such as small population concentrated in patches of suitable habitats restrict to coastal areas. We hope that this study bring new information for the species and help for the adequate management of the area in order to assure the presence of the dolphins as well as its behavior pattern and gene flow betweencommunities.
Resumo:
In this work, we propose a two-stage algorithm for real-time fault detection and identification of industrial plants. Our proposal is based on the analysis of selected features using recursive density estimation and a new evolving classifier algorithm. More specifically, the proposed approach for the detection stage is based on the concept of density in the data space, which is not the same as probability density function, but is a very useful measure for abnormality/outliers detection. This density can be expressed by a Cauchy function and can be calculated recursively, which makes it memory and computational power efficient and, therefore, suitable for on-line applications. The identification/diagnosis stage is based on a self-developing (evolving) fuzzy rule-based classifier system proposed in this work, called AutoClass. An important property of AutoClass is that it can start learning from scratch". Not only do the fuzzy rules not need to be prespecified, but neither do the number of classes for AutoClass (the number may grow, with new class labels being added by the on-line learning process), in a fully unsupervised manner. In the event that an initial rule base exists, AutoClass can evolve/develop it further based on the newly arrived faulty state data. In order to validate our proposal, we present experimental results from a level control didactic process, where control and error signals are used as features for the fault detection and identification systems, but the approach is generic and the number of features can be significant due to the computationally lean methodology, since covariance or more complex calculations, as well as storage of old data, are not required. The obtained results are significantly better than the traditional approaches used for comparison
Resumo:
A possible approach to the cosmological coincidence problem is to allow dark matter and dark energy to interact with each other also nongravitationally. Two general classes of interaction were considered in this thesis, characterized by a constant interaction parameter ( or
Resumo:
In Percolation Theory, functions like the probability that a given site belongs to the infinite cluster, average size of clusters, etc. are described through power laws and critical exponents. This dissertation uses a method called Finite Size Scaling to provide a estimative of those exponents. The dissertation is divided in four parts. The first one briefly presents the main results for Site Percolation Theory for d = 2 dimension. Besides, some important quantities for the determination of the critical exponents and for the phase transistions understanding are defined. The second shows an introduction to the fractal concept, dimension and classification. Concluded the base of our study, in the third part the Scale Theory is mentioned, wich relates critical exponents and the quantities described in Chapter 2. In the last part, through the Finite Size Scaling method, we determine the critical exponents fi and. Based on them, we used the previous Chapter scale relations in order to determine the remaining critical exponents
Resumo:
In general, an inverse problem corresponds to find a value of an element x in a suitable vector space, given a vector y measuring it, in some sense. When we discretize the problem, it usually boils down to solve an equation system f(x) = y, where f : U Rm ! Rn represents the step function in any domain U of the appropriate Rm. As a general rule, we arrive to an ill-posed problem. The resolution of inverse problems has been widely researched along the last decades, because many problems in science and industry consist in determining unknowns that we try to know, by observing its effects under certain indirect measures. Our general subject of this dissertation is the choice of Tykhonov´s regulaziration parameter of a poorly conditioned linear problem, as we are going to discuss on chapter 1 of this dissertation, focusing on the three most popular methods in nowadays literature of the area. Our more specific focus in this dissertation consists in the simulations reported on chapter 2, aiming to compare the performance of the three methods in the recuperation of images measured with the Radon transform, perturbed by the addition of gaussian i.i.d. noise. We choosed a difference operator as regularizer of the problem. The contribution we try to make, in this dissertation, mainly consists on the discussion of numerical simulations we execute, as is exposed in Chapter 2. We understand that the meaning of this dissertation lays much more on the questions which it raises than on saying something definitive about the subject. Partly, for beeing based on numerical experiments with no new mathematical results associated to it, partly for being about numerical experiments made with a single operator. On the other hand, we got some observations which seemed to us interesting on the simulations performed, considered the literature of the area. In special, we highlight observations we resume, at the conclusion of this work, about the different vocations of methods like GCV and L-curve and, also, about the optimal parameters tendency observed in the L-curve method of grouping themselves in a small gap, strongly correlated with the behavior of the generalized singular value decomposition curve of the involved operators, under reasonably broad regularity conditions in the images to be recovered
Resumo:
Crustal thickness and VP/VS estimates are essential to the studies of subsurface geological structures and also to the understanding of the regional tectonic evolution of a given area. In this dissertation, we use the Langston´s (1979) Receiver Function Method using teleseismic events reaching the seismographic station with angles close to the vertical. In this method, the information of the geologic structures close to the station is isolated so that effects related to the instrument response and source mechanics are not present. The resulting time series obtained after the deconvolution between horizontal components contains the larger amplitude referring to the P arrival, followed by smaller arrival caused by the reverberation and conversion of the P-wave at the base of the crust. We also used the HK-Stacking after Zhu & Kanamori (2000) to obtain crustal thickness and Vp/VS estimates. This method works stacking receiver functions so that the best estimates of crustal thickness and Vp/VS are found when the direct P, the Ps wave and the first multiple are coherently stacked. We used five broadband seismographic stations distributed over the Borborema Province, NE Brazil. Crustal thickness and Vp/VS estimates are consistent with the crust-mantle interface obtained using gravity data. We also identified crutal thickening in the NW portion of the province, close to Sobral/CE. Towards the center-north portion of the province, there is an evident crustal thinning which coincides with a geological feature consisting of an alignment of sedimentary basins known as the Cariris-Potiguar trend. Towards the NE portion of the province, in Solânea/PB and Agrestina/PE regions, occurs a crustal thickening and a systematic increase in the VP/VS values which suggest the presence of mafic rocks in the lower crust also consistent with the hypothesis of underplating in the region