52 resultados para Chitosan


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The acquisition of oligosaccharides from chitosan has been the subject of several studies in the pharmaceutical, biochemical, food and medical due to functional properties of these compounds. This study aimed to boost its production of chitooligosaccharides (COS) through the optimization of production and characterization of chitosanolytic enzymes secreted by microorganisms Paenibacillus chitinolyticus and Paenibacillus ehimensis, and evaluating the antioxidant potential of the products obtained. In the process of optimizing the production of chitosanase were employed strategies Fractional Factorial Experimental Design and Central Composite Rotatable Design. The results identified the chitosan, peptone and yeast extract as the components that influenced the production of chitosanase by these microorganisms. With the optimization of the culture media was possible to obtain an increase of approximately 8.1 times (from 0.043 to 0.35 U.mL U.mL-1) and 7.6 times (from 0.08 U.mL-1 to 0.61 U.mL-1) in the enzymatic activity of chitosanase produced by P. chitinolyticus and P. ehimensis respectively. Enzyme complexes showed high stability in temperature ranges between 30º and 55º C and pH between 5.0 and 9.0. Has seen the share of organic solvents, divalent ions and other chemical agents on the activity of these enzymes, demonstrating high stability of these crude complexes and dependence of Mn2+. The COS generated showed the ability of DPPH radical scavenging activity, reaching a maximum rate of scavenging of 61% and 39% when they were produced with enzymes of P. ehimensis and P. chitinolyticus respectively. The use of these enzymes in raw form might facilitate its use for industrial applications

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chitosan is a natural polymer, biodegradable, nontoxic, high molecular weight derived from marine animals, insects and microorganisms. Oligomers of glucosamine (GlcN) and N-acetylglucosamine (GlcNAc) have interesting biological activities, including antitumor effects, antimicrobial activity, antioxidant and others. The alternative proposed by this work was to study the viability of producing chitooligosaccharides using a crude enzymes extract produced by the fungus Metarhizium anisopliae. Hydrolysis of chitosan was carried out at different times, from 10 to 60 minutes to produce chitooligosaccharides with detection and quantification performed by High Performace Liquid Chromatography (HPLC). The evaluation of cytotoxicity of chitosan oligomers was carried out in tumor cells (HepG2 and HeLa) and non-tumor (3T3). The cells were treated for 72 hours with the oligomers and cell viability investigated using the method of MTT. The production of chitosan oligomers was higher for 10 minutes of hydrolysis, with pentamers concentration of 0.15 mg/mL, but the hexamers, the molecules showing greater interest in biological properties, were observed only with 30 minutes of hydrolysis with a concentration of 0.004 mg/mL. A study to evaluate the biological activities of COS including cytotoxicity in tumor and normal cells and various tests in vitro antioxidant activity of pure chitosan oligomers and the mixture of oligomers produced by the crude enzyme was performed. Moreover, the compound with the highest cytotoxicity among the oligomers was pure glucosamine, with IC50 values of 0.30; 0.49; 0.44 mg/mL for HepG2 cells, HeLa and 3T3, respectively. Superoxide anion scavenging was the mainly antioxidant activity showed by the COS and oligomers. This activity was also depending on the oligomer composition in the chitosan hydrolysates. The oligomers produced by hydrolysis for 20 minutes was analyzed for the ability to inhibit tumor cells showing inhibition of proliferation only in HeLa cells, did not show any effect in HepG2 cells and fibroblast cells (3T3)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study proposes to do a study on the mathematical modeling of permeation of films based on chitosan. To conduct the study were obtained membranes with various compositions: a virtually pure membrane-based chitosan; one of chitosan associated with poly (ethylene oxide (PEO). The membranes of pure chitosan were treated with plasma in atmospheres of oxygen, argon and methane. The various types of films were characterized as to its permeation regarding sufamerazina sodium. In the process of mathematical modeling were compared the standard method of obtaining the coefficient of permeation recital straight down the slope of the plot obtained by extinction / time with a the integration process of numerical permeability rate will be calculated from the spectroscopy UV

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chitosan membranes have been modified by plasma, utilizing the following gases: nitrogen (N2), methane (CH4), argon (Ar), oxygen (O2) and hydrogen. The modified membranes by plasma were compared to the unmodified ones. The membranes were characterized by absorption assay, contact angle, atomic force microscopy (AFM). Also, permeability assay of sodium sulfamerazine from such membranes were carried out. Through the absorption assay and contact angle it was possible to obtain information of the wettability of the membranes and what changes the plasma treatment can promote in relation to it. The plasma treatment using oxygen promoted increase of the wetability and swelling while the samples treated with methane decrease of the wetability and swelling. Through the Optical Emission Spectroscopy (OES) it was possible to identify which species were present in the plasma during the treatment. And through the AFM analysis it was possible to observe the changes nanotopography occurred on the surface of the samples. Permeability assay were archived for all treated membranes and compared to no treated ones. Due to that assay it was possible verify which the plasma treatment increased the permeability spectrum of the membranes which has varied from 1,4548 *10-5cm2.min-1 to 2,7713*10-5cm2.min-1. Chitosan membranes with permeability varied are importance in systems drug delivery, to liberate a wide variety of drugs

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Primary cementing is one of the main operations in well drilling responsible for the mechanical stability and zonal isolation during the production of oil. However, the cement sheath is constantly under mechanical stresses and temperature variations caused by the recovery of heavy oil. In order to minimize fracture and wear of the cement sheath, new admixtures are developed to improve the properties of Portland cement slurries and avoid environmental contamination caused by leaking gas and oil. Polymers with the ability to form polymeric films are candidates to improve the properties of hardened cement slurries, especially their fracture energy. The present study aimed at evaluating the effect of the addition of a chitosan suspension on cement slurries in order to improve the properties of the cement and increase its performance on heavy oil recovery. Chitosan was dissolved in acetic ac id (0.25 M and 2 M) and added to the formulation of the slurries in different concentrations. SEM analyses confirmed the formation of polymeric films in the cementitious matrix. Strength tests showed higher fracture energy compared to slurries without the addition of chitosan. The formation of the polymeric films also reduced the permeability of the slurry. Therefore, chitosan suspensions can be potentially used as cementing admixtures for heavy oil well applications

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chitosan is being studied for use as dressing due their biological properties. Aiming to expand the use in biomedical applications, chitosan membranes were modified by plasma using the following gases: nitrogen (N2), methane (CH4), argon (Ar), oxygen (O2) and hydrogen (H2). The samples were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), contact angle, surface energy and water absorption test. Biological Tests were also performed, such as: test sterilization and proliferation of fibroblasts (3T3 line). Through SEM we observed morphological changes occurring during the plasma treatment, the formation of micro and nano-sized valleys. MFA was used to analyze different roughness parameters (Ra, Rp, Rz) and surface topography. It was found that the treated samples had an increase in surface roughness and sharp peaks. Methane plasma treatment decreased the hydrophilicity of the membranes and also the rate of water absorption, while the other treatments turned the membranes hydrophilic. The sterilization was effective in all treatment times with the following gases: Ar, N2 and H2. With respect to proliferation, all treatments showed an improvement in cell proliferation increased in a range 150% to 250% compared to untreated membrane. The highlights were the treatments with Ar 60 min, O2 60 min, CH4 15 min. Observing the results of the analyzes performed in this study, it appears that there is no single parameter that influences cell proliferation, but rather a set of ideal conditions that favor cell proliferation

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Brazil, several species of scorpions are known to cause accidents which can lead to death, which are mainly belonging to the genus Tityus. The scorpion Tityus serrulatus is the main responsible for more severe cases. Anti-scorpion serums are routinely produced by various institutions, despite their effectiveness, quality and action depends on how quickly treatment is started. Studies have been developed in the search for appropriate technologies to encapsulate and release recombinant or natives proteins capable of inducing antibody production. In this context, chitosan copolymer which can be obtained from the partial deacetylation of chitin or in some microorganisms and it is biocompatible and biodegradable has been widely used for this purpose. This study aimed to search for a system release from chitosan nanoparticles for peptide / protein of the venom of the scorpion T. serrulatus, able to provide a new model of immunization in animals, in order to obtain a potential novel polyclonal serum, anti-venom T. serrulatus. The chitosan nanoparticles were prepared by ionic gelation with polyanion tripolyphosphate (TPP). After standardizing the concentrations of TPP and chitosan was evaluated the efficiency of incorporation of bovine serum albumin (BSA) and scorpion venom, showed particle size compatible with the intended purpose. The particles showed adequate size around 200nm. The crosslinking was confirmed by absorption spectroscopy in the infrared. After verified the high encapsulation efficiency (EE) for acid bicinconínico method (BCA) protein assay and the particle size distribution, the success of the technique was proven and the potential for in vivo application of nanoparticles. The experimental animals were vaccinated and the antibodies measured by ELISA

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chitin and chitosan are nontoxic, biodegradable and biocompatible polymers produced by renewable natural sources with applications in diverse areas such as: agriculture, textile, pharmaceutical, cosmetics and biomaterials, such as gels, films and other polymeric membranes. Both have attracted greater interest of scientists and researchers as functional polymeric materials. In this context, the objective of this study was to take advantage of the waste of shrimp (Litopenaeus vannamei and Aristeus antennatus) and crabs (Ucides cordatus) from fairs, beach huts and restaurant in Natal/RN for the extraction of chitin and chitosan for the production of membranes by electrospinning process. The extraction was made through demineralization, deproteinization, deodorization and deacetylation. Morphological analyzes (SEM and XRD), Thermal analysis (TG and DTG), Spectroscopy in the Region of the Infrared with Transformed of Fourier (FTIR) analysis Calorimetry Differential Scanning (DSC) and mechanical tests for traction were performed. In (XRD) the semicrystalline structure of chitosan can be verified while the chitin had higher crystallinity. In the thermal analysis showed a dehydration process followed by decomposition, with similar behavior of carbonized material. Chitosan showed temperature of maximum degradation lower than chitin. In the analysis by Differential Scanning Calorimetry (DSC) the curves were coherent to the thermal events of the chitosan membranes. The results obtained with (DD) for chitosan extracted from Litopenaeus vannamei and Aristeus antennatus shrimp were (80.36 and 71.00%) and Ucides cordatus crabs was 74.65%. It can be observed that, with 70:30 solutions (v/v) (TFA/DCM), 60 and 90% CH3COOH, occurred better facilitate the formation of membranes, while 100:00 (v/v) (TFA/DCM) had formation of agglomerates. In relation to the monofilaments diameters of the chitosan membranes, it was noted that the capillary-collector distance of 10 cm and tensions of 25 and 30 kV contributed to the reduction of the diameters of membranes. It was found that the Young s modulus decreases with increasing concentration of chitosan in the membranes. 90% CH3COOH contributed to the increase in the deformation resulting in more flexible material. The membranes with 5% chitosan 70:30 (v/v) (TFA/DCM) had higher tensile strength

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work a 24 factorial design with triplicate at central point was used in order to investigate the influence of chitosan concentration (substrate) (Cs), culture media temperature (CMT), aeration ratio (AR) as well as agitation (A) on chitosanase production by Aspergillus ochraceus. Experiments were carried out using the following levels to the factors: (Cs) (-1) 0.1%; (0) 0.15%; (+1) 0.2%; (TMC) (-1) 25 minutes; (0) 30 minutes; (+1) 35 minutes; (RA) (-1) 0.4; (0) 0.6; (+1) 0.8; (A) (-1) 90 rpm, (0) 120 rpm, (+1) 150 rpm. One chitosanolytic activity (U.mL-1) was defined as the enzyme necessary to produce 1.0 mmol.min-1 of glicosamine by mL of extract. Chitosanolytic assays were carried out using two extract volumes, 0.05 and 0.1 mL, respectively. Results showed that was possible to produce chitosanase of order aproximatelly 5,9 U.mL-1 by Aspergillus ochraceus and chitosanolytic activity was increased by increment on substrate concentration, aeration ratio as well as agitation while media culture temperature increment decreased activity

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Currently, studies in the area of polymeric microcapsules and nanocapsules and controlled release are considerably advanced. This work aims the study and development of microcapsules and nanocapsules from Chitosan/MDI, using a new technique of interfacial polycondensation combined to spontaneous emulsification, for encapsulation of BZ-3. It was firstly elaborated an experimental design of 23 of the particle in white without the presence of BZ-3 and Miglyol, where the variables were the concentrations of MDI, chitosan and solvent. Starting from the data supplied by the experimental design was chosen the experiment with smaller particle diameter and only added like this BZ-3 and Miglyol. The suspension containing concentrations of 6.25 mg/mL, 12.5 mg/mL, 18.75 mg/mL, 25 mg/mL of BZ-3 were prepared, nevertheless, during the storage time, these formulations presented drug precipitates in the suspensions of 18.75 mg/mL and 25 mg/mL of BZ-3. This apparition of precipitate was attributed to the diffusion of BZ-3 for the aqueous phase without any encapsulation, suggesting so the use of the smaller concentrations of the BZ-3. The suspension containing 6.25mg/mL of BZ3 presented average size of 1.47μm, zeta potential of 61 mV, pH 5.64 and this sample showed an amount of BZ-3 and drug entrapment of 100 %. The suspension containing 12.5mg/mL of BZ-3 presented average size of 1.76μm, zeta potential of 47.4 mV, pH 5.71 and this sample showed an amount of BZ-3 and drug entrapment of 100 %. Then, showing such important characteristics, these two formulations were chosen for futher continuity to the study. These formulations were also characterized by the morphology, FTIR, stability for Turbiscan, DSC and a study of controlled release of the BZ-3 was elaborated in different receiving means

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Actually, surveys have been developed for obtaining new materials and methodologies that aim to minimize environmental problems due to discharges of industrial effluents contaminated with heavy metals. The adsorption has been used as an alternative technology effectively, economically viable and potentially important for the reduction of metals, especially when using natural adsorbents such as certain types of clay. Chitosan, a polymer of natural origin, present in the shells of crustaceans and insects, has also been used for this purpose. Among the clays, vermiculite is distinguished by its good ion exchange capacity and in its expanded form enhances its properties by greatly increasing its specific surface. This study aimed to evaluate the functionality of the hybrid material obtained through the modification of expanded vermiculite with chitosan in the removal of lead ions (II) in aqueous solution. The material was characterized by infrared spectroscopy (IR) in order to evaluate the efficiency of modification of matrix, the vermiculite, the organic material, chitosan. The thermal stability of the material and the ratio clay / polymer was evaluated by thermogravimetry. To evaluate the surface of the material was used in scanning electron microscopy (SEM) and (BET). The BET analysis revealed a significant increase in surface area of vermiculite that after interaction with chitosan, was obtained a value of 21, 6156 m2 / g. Adsorption tests were performed according to the particle size, concentration and time. The results show that the capacity of removal of ions through the vermiculite was on average 88.4% for lead in concentrations ranging from 20-200 mg / L and 64.2% in the concentration range of 1000 mg / L. Regarding the particle size, there was an increase in adsorption with decreasing particle size. In fuction to the time of contact, was observed adsorption equilibrium in 60 minutes with adsorption capacity. The data of the isotherms were fitted to equation Freundlich. The kinetic study of adsorption showed that the pseudo second- order model best describes the adsorption adsorption, having been found following values K2=0,024 g. mg-1 min-1and Qmax=25,75 mg/g, value very close to the calculated Qe = 26.31 mg / g. From the results we can conclude that the material can be used in wastewater treatment systems as a source of metal ions adsorbent due to its high adsorption capacity

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The obtaining of the oligosaccharides from chitosanase, has showed interest of the pharmaceutical area in the last years due their countless functional properties. Although, the great challenge founded out is how to keep a constant and efficient production. The alternative proposed by this present work was to study the viability to develop an integrated technology, with reduced costs. The strategy used was the obtaining of the oligomers through enzymatic hydrolysis using chitosanolitic enzymes obtained straight from the fermented broth, eliminating this way the phases involved in the enzymes purification. The two chitosanases producing strains chosen for the work, Paenibacillus chitinolyticus and Paenibacillus ehimensis, were evaluated according to the behavior in the culture medium with simple sugar and in relation to the pH medium variations. The culture medium for the chitosanases induction and production was developed through addition of soluble chitosan as carbon source. The soluble chitosan was obtained using hydrochloric acid solution 0.1 M and afterwards neutralization with NaOH 10 M. The enzymatic complexes were obtained from induction process in culture medium with 0.2% of soluble chitosan. The enzymes production was verified soon after the consumption of the simple sugars by the microorganisms and the maximum chitosanolitic activity obtained in the fermented broth by Paenibacillus chitinolyticus was 249 U.L-1 and by Paenibacillus ehimensis was 495U.L-1. These two enzymatic complexes showed stability when stored at 20°C for about 91 days. The enzymes in the fermented broth by Paenibacillus chitinolyticus, when exposed at temperature of 55°C and pH 6.0, where the activity is maximum, showed 50% lost of activity after 3 hours Meanwhile, for the complex produced by Paenibacillus ehimensis, after 6 days of exposure, it was detected 100% of the activity. The chito-oligosaccharides obtained by the hydrolysis of a 1% chitosan solution, using the enzymatic complex produced by Paenibacillus chitinolyticus showed larger quantity after 9 hours hydrolysis and using the complex produced by Paenibacillus ehimensis after 20 minutes was observed the chito-ligosacharides with polymerization degree between 3 and 6 units. Evaluating these results, it was verified that the production of chitosan-oligosaccharides is possible, using a simultaneous process

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seeking a greater appreciation of cheese whey was developed to process the hydrogenation of lactose for the production of lactitol, a polyol with high added value, using the catalyst Ni / activated carbon (15% and 20% nickel), the nitride Mo2N, the bimetallic carbide Ni-Mo/ activated carbon and carbide Mo2C. After synthesis, the prepared catalysts were analyzed by MEV, XRD, laser granulometry and B.E.T. The reactor used in catalytic hydrogenation of lactose was the type of bed mud with a pressure (68 atm), temperature (120 oC) and stirring speed (500 rpm) remained constant during the experiments. The system operated in batch mode for the solid and liquid and semi-continuous to gas. Besides the nature of the catalyst, we studied the influence of pH of reaction medium for Mo2C carbide as well as evaluating the character of the protein inhibitor and chloride ions on the activity of catalysts Ni (20%)/Activated Carbon and bimetallic carbide Ni-Mo/Activated Carbon. The decrease in protein levels was performed by coagulation with chitosan and adsorption of chloride ions was performed by ion exchange resins. In the process of protein adsorption and chloride ions, the maximum percentage extracted was about 74% and 79% respectively. The micrographs of the powders of Mo2C and Mo2N presented in the form of homogeneous clusters, whereas for the catalysts supported on activated carbon, microporous structure proved impregnated with small particles indicating the presence of metal. The results showed high conversion of lactose to lactitol 90% for the catalyst Ni (20%)/Activated Carbon at pH 6 and 46% for the carbide Mo2C pH 8 (after addition of NH4OH) using the commercial lactose. Monitoring the evolution of the constituents present in the reaction medium was made by liquid chromatography. A kinetic model of heterogeneous Langmuir Hinshelwood type was developed which showed that the estimated constants based catalysts promoted carbide and nitride with a certain speed the adsorption, desorption and production of lactitol

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An evaluation project was conducted on the technique of treatment for effluent oil which is the deriving process to improve cashews. During the evaluation the following techniques were developed: advanced processes of humid oxidation, oxidative processes, processes of biological treatment and processes of adsorption. The assays had been carried through in kinetic models, with an evaluation of the quality of the process by means of determining the chemical demand of oxygen (defined as a technique of control by means of comparative study between the available techniques). The results demonstrated that the natural biodegradation of the effluent ones is limited, as result using the present natural flora in the effluent one revealed impracticable for an application in the industrial systems, independent of the evaluation environment (with or without the oxygen presence). The job of specific microorganisms for the oily composite degradation developed the viability technique of this route, the acceptable levels of inclusion in effluent system of treatment of the improvement of the cashew being highly good with reasonable levels of removal of CDO. However, the use combined with other techniques of daily pay-treatment for these effluent ones revealed to still be more efficient for the context of the treatment of effluent and discarding in receiving bodies in acceptable standards for resolution CONAMA 357/2005. While the significant generation of solid residues the process of adsorption with agroindustrial residues (in special the chitosan) is a technical viable alternative, however, when applied only for the treatment of the effluent ones for discarding in bodies of water, the economic viability is harmed and minimized ambient profits. Though, it was proven that if used for ends of I reuse, the viability is equalized and justifies the investments. There was a study of the photochemistry process which have are applicable to the treatment of the effluent ones, having resulted more satisfactory than those gotten for the UV-Peroxide techniques. There was different result on the one waited for the use of catalyses used in the process of Photo. The catalyses contained the mixing oxide base of Cerium and Manganese, incorporated of Potassium promoters this had presented the best results in the decomposition of the involved pollutants. Having itself an agreed form the gotten photochemistry daily paytreatment resulted, then after disinfection with chlorine the characteristics next the portability to the water were guarantee. The job of the humid oxidation presented significant results in the removal of pollutants; however, its high cost alone is made possible for job in projects of reuses, areas of low scarcity and of raised costs with the capitation/acquisition of the water, in special, for use for industrial and potable use. The route with better economic conditions and techniques for the job in the treatment of the effluent ones of the improvement of the cashew possesses the sequence to follow: conventional process of separation water-oil, photochemistry process and finally, the complementary biological treatment

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The heavy metals are used in many industrial processes and when discharged to the environment can cause harmful effects to human, plants and animals. The adsorption technology has been used as an effective methodology to remove metallic ions. The search for new adsorbents motivated the development of this research, accomplished with the purpose of removing Cr (III) from aqueous solutions. Diatomite, chitosan, Filtrol 24TM and active carbon were used as adsorbents. To modify the adsorbent surface was used a bicontinuous microemulsion composed by water (25%), kerosene (25%), saponified coconut oil (10%) and as co-surfactant isoamyl or butyl alcohols (40%). With the objective of developing the best operational conditions the research started with the surfactant synthesis and after that the pseudo-ternary diagrams were plotted. It was decided to use the system composed with isoamyl alcohol as co-surfactant due its smallest solubility in water. The methodology to impregnate the microemulsion on the adsorbents was developed and to prepare each sample was used 10 g of adsorbent and 20 mL of microemulsion. The effect of drying time and temperature was evaluated and the best results were obtained with T = 65 ºC and t = 48 h. After evaluating the efficiency of the tested adsorbents it was decided to use chitosan and diatomite. The influence of the agitation speed, granule size, heavy metal synthetic solution concentration, pH, contact time between adsorbent and metal solution, presence or not of NaCl and others metallic ions in the solution (copper and nickel) were evaluated. The adsorption isotherms were obtained and Freundlich and Langmuir models were tested. The last one correlated better the data. With the purpose to evaluate if using a surfactant solution would supply similar results, the adsorbent surface was modified with this solution. It was verified that the adsorbent impregnated with a microemulsion was more effective than the one with a surfactant solution, showing that the organic phase (kerosene) was important in the heavy metal removal process. It was studied the desorption process and verified that the concentrated minerals acids removed the chromium from the adsorbent surface better than others tested solutions. The treatment showed to be effective, being obtained an increase of approximately 10% in the chitosan s adsorption capacity (132 mg of Cr3+ / g adsorbent), that was already quite efficient, and for diatomite, that was not capable to remove the metal without the microemulsion treatment, it was obtained a capacity of 10 mg of Cr3+ / g adsorbent, checking the applied treatment effectiveness