85 resultados para Captura gravitacional
Resumo:
The marine turtles biological characteristics and the impact they have been suffering in consequence of human activities have caused in the last decades the decrease of populations to unsustainable levels. All four of the species described in this paper are registered as endangered in a list by IUCN: Caretta caretta, Lepidochelys olivacea, Chelonia mydas, Dermochelys coriacea. The main causes of such impact include several fishing activities, mostly the surface longline. This paper discusses the monitoring of two foreigner longline fleet along the North East Brazilian coast between October of 2004 and September of 2005. Both operated in the West South Atlantic, one using the Chinese technique and the other the American. The American method s target species is the swordfish (Xiphias gladius), and it is characterized by using squid as bait, J 9/0 offset 5º hook, light sticks and night soaking. It also operates in shallower waters than the Chinese method. The source of information about the efforts and the catches came from onboard observers and were used to calculate the catching rate of turtles over 1000 hooks (CPUE). The American equipment caught more turtles (CPUE = 0,059; N= 103), mainly D. coriacea, while the Chinese longline caught mainly the L. olivacea and presented a CPUE= 0,018 (N= 89). The hooks were most frequently found attached to the mouth of C. caretta, C. mydas, and L. olivacea. The D. coriacea were most frequently caught by hooks externally attached to different parts of their body. There was no significant difference between the hook type catching and most turtles were still alive when released. The results suggest a greater potential of turtle catching by the American method. Besides the statistic tests have showed less interaction between the Chinese equipment and marine turtles, the catches of this fishing technique could have been underestimated due to miscommunication between the onboard observer and the vessel s crew plus the retrieve of the longline during night time
Resumo:
Steam injection is the most used method of additional recovery for the extraction of heavy oil. In this type procedure is common to happen gravitational segregation and this phenomenon can affect the production of oil and therefore, it shoulds be considered in the projects of continuous steam injection. For many years, the gravitational segregation was not adequately considered in the calculation procedures in Reservoir Engineering. The effect of the gravity causes the segregation of fluids inside the porous media according to their densities. The results of simulation arising from reservoirs could provide the ability to deal with the gravity, and it became apparent that the effects of the gravity could significantly affect the performance of the reservoir. It know that the gravitational segregation can happen in almost every case where there is injection of light fluid, specially the steam, and occurs with greater intensity for viscous oil reservoirs. This work discusses the influence of some parameters of the rock-reservoir in segregation as viscosity, permeability, thickness, cover gas, porosity. From a model that shows the phenomenon with greater intensity, optimized some operational parameters as the rate flow rate steam, distance between the wells injector-producer, and interval of completion which contributed to the reduction in gravity override, thus increasing the oil recovery. It was shown a greater technical-economic viability for the model of distance between the wells 100 m. The analysis was performed using the simulator of CMG (Computer Modeling Group-Stars 2007.11, in which was observed by iterating between studied variables in heavy oil reservoirs with similar characteristics to Brazilian Northeast
Resumo:
The gas injection has become the most important IOR process in the United States. Furthermore, the year 2006 marks the first time the gas injection IOR production has surpassed that of steam injection. In Brazil, the installation of a petrochemical complex in the Northeast of Brazil (Bahia State) offers opportunities for the injection of gases in the fields located in the Recôncavo Basin. Field-scale gas injection applications have almost always been associated with design and operational difficulties. The mobility ratio, which controls the volumetric sweep, between the injected gas and displaced oil bank in gas processes, is typically unfavorable due to the relatively low viscosity of the injected gas. Furthermore, the difference between their densities results in severe gravity segregation of fluids in the reservoirs, consequently leading to poor control in the volumetric sweep. Nowadays, from the above applications of gas injection, the WAG process is most popular. However, in attempting to solve the mobility problems, the WAG process gives rise to other problems associated with increased water saturation in the reservoir including diminished gas injectivity and increased competition to the flow of oil. The low field performance of WAG floods with oil recoveries in the range of 5-10% is a clear indication of these problems. In order to find na effective alternative to WAG, the Gas Assisted Gravity Drainage (GAGD) was developed. This process is designed to take advantage of gravity force to allow vertical segregation between the injected CO2 and reservoir crude oil due to their density difference. This process consists of placing horizontal producers near the bottom of the pay zone and injecting gás through existing vertical wells in field. Homogeneous models were used in this work which can be extrapolated to commercial application for fields located in the Northeast of Brazil. The simulations were performed in a CMG simulator, the STARS 2007.11, where some parameters and their interactions were analyzed. The results have shown that the CO2 injection in GAGD process increased significantly the rate and the final recovery of oil
Resumo:
Due to reservoirs complexity and significantly large reserves, heavy oil recovery has become one of the major oil industry challenges. Thus, thermal methods have been widely used as a strategic method to improve heavy oil recovery. These methods improve oil displacement through viscosity reduction, enabling oil production in fields which are not considered commercial by conventional recovery methods. Among the thermal processes, steam flooding is the most used today. One consequence in this process is gravity segregation, given by difference between reservoir and injected fluids density. This phenomenon may be influenced by the presence of reservoir heterogeneities. Since most of the studies are carried out in homogeneous reservoirs, more detailed studies of heterogeneities effects in the reservoirs during steam flooding are necessary, since most oil reservoirs are heterogeneous. This paper presents a study of reservoir heterogeneities and their influence in gravity segregation during steam flooding process. In this study some heterogeneous reservoirs with physical characteristics similar those found in the Brazilian Northeast Basin were analyzed. To carry out the simulations, it was used the commercial simulator STARS by CMG (Computer Modeling Group) - version 2007.11. Heterogeneities were modeled with lower permeability layers. Results showed that the presence of low permeability barriers can improve the oil recovery, and reduce the effects of gravity segregation, depending on the location of heterogeneities. The presence of these barriers have also increased the recovered fraction even with the reduction of injected steam rate
Resumo:
In Brazil and around the world, oil companies are looking for, and expected development of new technologies and processes that can increase the oil recovery factor in mature reservoirs, in a simple and inexpensive way. So, the latest research has developed a new process called Gas Assisted Gravity Drainage (GAGD) which was classified as a gas injection IOR. The process, which is undergoing pilot testing in the field, is being extensively studied through physical scale models and core-floods laboratory, due to high oil recoveries in relation to other gas injection IOR. This process consists of injecting gas at the top of a reservoir through horizontal or vertical injector wells and displacing the oil, taking advantage of natural gravity segregation of fluids, to a horizontal producer well placed at the bottom of the reservoir. To study this process it was modeled a homogeneous reservoir and a model of multi-component fluid with characteristics similar to light oil Brazilian fields through a compositional simulator, to optimize the operational parameters. The model of the process was simulated in GEM (CMG, 2009.10). The operational parameters studied were the gas injection rate, the type of gas injection, the location of the injector and production well. We also studied the presence of water drive in the process. The results showed that the maximum vertical spacing between the two wells, caused the maximum recovery of oil in GAGD. Also, it was found that the largest flow injection, it obtained the largest recovery factors. This parameter controls the speed of the front of the gas injected and determined if the gravitational force dominates or not the process in the recovery of oil. Natural gas had better performance than CO2 and that the presence of aquifer in the reservoir was less influential in the process. In economic analysis found that by injecting natural gas is obtained more economically beneficial than CO2
Resumo:
The oil companies in the area in general are looking for new technologies that can increase the recovery factor of oil contained in reservoirs. These investments are mainly aimed at reducing the costs of projects which are high. Steam injection is one of these special methods of recovery in which steam is injected into the reservoir in order to reduce the viscosity of the oil and make it more mobile. The process assisted gravity drainage steam (SAGD) using steam injection in its mechanism, as well as two parallel horizontal wells. In this process steam is injected through the horizontal injection well, then a vapor chamber is formed by heating the oil in the reservoir and, by the action of gravitational forces, this oil is drained down to where the production well. This study aims to analyze the influence of pressure drop and heat along the injection well in the SAGD process. Numerical simulations were performed using the thermal simulator STARS of CMG (Computer Modeling Group). The parameters studied were the thermal conductivity of the formation, the flow of steam injection, the inner diameter of the column, the steam quality and temperature. A factorial design was used to verify the influence of the parameters studied in the recovery factor. We also analyzed different injection flow rates for the model with pressure drop and no pressure drop, as well as different maximum flow rates of oil production. Finally, we performed an economic analysis of the two models in order to check the profitability of the projects studied. The results showed that the pressure drop in injection well have a significant influence on the SAGD process.
Resumo:
Como os recursos de hidrocarbonetos convencionais estão se esgotando, a crescente demanda mundial por energia impulsiona a indústria do petróleo para desenvolver mais reservatórios não convencionais. Os recursos mundiais de betume e óleo pesado são estimados em 5,6 trilhões de barris, dos quais 80% estão localizados na Venezuela, Canadá e EUA. Um dos métodos para explorar estes hidrocarbonetos é o processo de drenagem gravitacional assistido com injeção de vapor e solvente (ES-SAGD Expanding Solvent Steam Assisted Gravity Drainage). Neste processo são utilizados dois poços horizontais paralelos e situados verticalmente um acima do outro, um produtor na base do reservatório e um injetor de vapor e solvente no topo do reservatório. Este processo é composto por um método térmico (injeção de vapor) e um método miscível (injeção de solvente) com a finalidade de causar a redução das tensões interfaciais e da viscosidade do óleo ou betume. O objetivo deste estudo é analisar a sensibilidade de alguns parâmetros operacionais, tais como: tipo de solvente injetado, qualidade do vapor, distância vertical entre os poços, porcentagem de solvente injetado e vazão de injeção de vapor sobre o fator de recuperação para 5, 10 e 15 anos. Os estudos foram realizados através de simulações concretizadas no módulo STARS (Steam Thermal, and Advanced Processes Reservoir Simulator) do programa da CMG (Computer Modelling Group), versão 2010.10, onde as interações entre os parâmetros operacionais, estudados em um modelo homogêneo com características de reservatórios semelhantes aos encontrados no Nordeste Brasileiro, foram observadas. Os resultados obtidos neste estudo mostraram que os melhores fatores de recuperação ocorreram para níveis máximos do percentual de solvente injetado e da distância vertical entre os poços. Observou-se também que o processo será rentável dependendo do tipo e do valor do solvente injetado
Resumo:
Nowadays, most of the hydrocarbon reserves in the world are in the form of heavy oil, ultra - heavy or bitumen. For the extraction and production of this resource is required to implement new technologies. One of the promising processes for the recovery of this oil is the Expanding Solvent Steam Assisted Gravity Drainage (ES-SAGD) which uses two parallel horizontal wells, where the injection well is situated vertically above the production well. The completion of the process occurs upon injection of a hydrocarbon additive at low concentration in conjunction with steam. The steam adds heat to reduce the viscosity of the oil and solvent aids in reducing the interfacial tension between oil/ solvent. The main force acting in this process is the gravitational and the heat transfer takes place by conduction, convection and latent heat of steam. In this study was used the discretized wellbore model, where the well is discretized in the same way that the reservoir and each section of the well treated as a block of grid, with interblock connection with the reservoir. This study aims to analyze the influence of the pressure drop and heat along the injection well in the ES-SAGD process. The model used for the study is a homogeneous reservoir, semi synthetic with characteristics of the Brazilian Northeast and numerical simulations were performed using the STARS thermal simulator from CMG (Computer Modelling Group). The operational parameters analyzed were: percentage of solvent injected, the flow of steam injection, vertical distance between the wells and steam quality. All of them were significant in oil recovery factor positively influencing this. The results showed that, for all cases analyzed, the model considers the pressure drop has cumulative production of oil below its respective model that disregards such loss. This difference is more pronounced the lower the value of the flow of steam injection
Resumo:
Steam assisted gravity drainage process (SAGD) involves two parallel horizontal wells located in a same vertical plane, where the top well is used as steam injector and the bottom well as producer. The dominant force in this process is gravitational. This improved oil recovery method has been demonstrated to be economically viable in commercial projects of oil recovery for heavy and extra heavy oil, but it is not yet implemented in Brazil. The study of this technology in reservoirs with characteristics of regional basins is necessary in order to analyze if this process can be used, minimizing the steam rate demand and improving the process profitability. In this study, a homogeneous reservoir was modeled with characteristics of Brazilian Northeast reservoirs. Simulations were accomplished with STARS , a commercial software from Computer Modelling Group, which is used to simulate improved oil recovery process in oil reservoirs. In this work, a steam optimization was accomplished in reservoirs with different physical characteristics and in different cases, through a technical-economic analysis. It was also studied a semi-continuous steam injection or with injection stops. Results showed that it is possible to use a simplified equation of the net present value, which incorporates earnings and expenses on oil production and expenses in steam requirement, in order to optimize steam rate and obtaining a higher net present value in the process. It was observed that SAGD process can be or not profitable depending on reservoirs characteristics. It was also obtained that steam demand can still be reduced injecting in a non continuous form, alternating steam injection with stops at several time intervals. The optimization of these intervals allowed to minimize heat losses and to improve oil recovery
Resumo:
Recent astronomical observations (involving supernovae type Ia, cosmic background radiation anisotropy and galaxy clusters probes) have provided strong evidence that the observed universe is described by an accelerating, flat model whose space-time properties can be represented by the FriedmannRobertsonWalker (FRW) metric. However, the nature of the substance or mechanism behind the current cosmic acceleration remains unknown and its determination constitutes a challenging problem for modern cosmology. In the general relativistic description, an accelerat ing regime is usually obtained by assuming the existence of an exotic energy component endowed with negative pressure, called dark energy, which is usually represented by a cosmological constant ¤ associated to the vacuum energy density. All observational data available so far are in good agreement with the concordance cosmic ¤CDM model. Nevertheless, such models are plagued with several problems thereby inspiring many authors to propose alternative candidates in the relativistic context. In this thesis, a new kind of accelerating flat model with no dark energy and fully dominated by cold dark matter (CDM) is proposed. The number of CDM particles is not conserved and the present accelerating stage is a consequence of the negative pressure describing the irreversible process of gravitational particle creation. In order to have a transition from a decelerating to an accelerating regime at low redshifts, the matter creation rate proposed here depends on 2 parameters (y and ߯): the first one identifies a constant term of the order of H0 and the second one describes a time variation proportional to he Hubble parameter H(t). In this scenario, H0 does not need to be small in order to solve the age problem and the transition happens even if there is no matter creation during the radiation and part of the matter dominated phase (when the ß term is negligible). Like in flat ACDM scenarios, the dimming of distant type Ia supernovae can be fitted with just one free parameter, and the coincidence problem plaguing the models driven by the cosmological constant. ACDM is absent. The limits endowed with with the existence of the quasar APM 08279+5255, located at z = 3:91 and with an estimated ages between 2 and 3 Gyr are also investigated. In the simplest case (ß = 0), the model is compatible with the existence of the quasar for y > 0:56 whether the age of the quasar is 2.0 Gyr. For 3 Gyr the limit derived is y > 0:72. New limits for the formation redshift of the quasar are also established
Resumo:
Nanostructured materials have been spreading successfully over past years due its size and unusual properties, resulting in an exponential growth of research activities devoted to nanoscience and nanotechnology, which has stimulated the search for different methods to control main properties of nanomaterials and make them suitable for applications with high added value. In the late 90 s an alternative and low cost method was proposed from alkaline hydrothermal synthesis of nanotubes. Based on this context, the objective of this work was to prepare different materials based on TiO2 anatase using hydrothermal synthesis method proposed by Kasuga and submit them to an acid wash treatment, in order to check the structural behavior of final samples. They were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), adsorption/desorption of N2, thermal analysis (TG/DTA) and various spectroscopic methods such as absorption spectroscopy in the infrared (FT-IR), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). All the information of characterizations confirmed the complete conversion of anatase TiO2 in nanotubes titanates (TTNT). Observing the influence of acid washing treatment in titanates structure, it was concluded that the nanotubes are formed during heat treatment, the sample which was not subjected to this process also achieved a complete phase transformation, as showed in crystallography and morphology results, however the surface area of them practically doubled after the acid washing. By spectroscopy was performed a discussion about chemical composition of these titanates, obtaining relevant results. Finally, it was observed that the products obtained in this work are potential materials for various applications in adsorption, catalysis and photocatalysis, showing great promise in CO2 capture
Resumo:
Intensive use of machinery and engines burning fuel dumps into the atmosphere huge amounts of carbon dioxide (CO2), causing the intensification of the greenhouse effect. Climate changes that are occurring in the world are directly related to emissions of greenhouse gases, mainly CO2, gases, mainly due to the excessive use of fossil fuels. The search for new technologies to minimize the environmental impacts of this phenomenon has been investigated. Sequestration of CO2 is one of the alternatives that can help minimize greenhouse gas emissions. The CO2 can be captured by the post-combustion technology, by adsorption using adsorbents selective for this purpose. With this objective, were synthesized by hydrothermal method at 100 °C, the type mesoporous materials MCM - 41 and SBA-15. After the synthesis, the materials were submitted to a calcination step and subsequently functionalized with different amines (APTES, MEA, DEA and PEI) through reflux method. The samples functionalized with amines were tested for adsorption of CO2 in order to evaluate their adsorption capacities as well, were subjected to various analyzes of characterization in order to assess the efficiency of the method used for functionalization with amines. The physic-chemical techniques were used: X- ray diffraction (XRD), nitrogen adsorption and desorption (BET/BJH), scanning electron microscopy (SEM), transmission electron microscopy (TEM), CNH Analysis, Thermogravimetry (TG/DTG) and photoelectron spectroscopy X-ray (XPS). The CO2 adsorption experiments were carried out under the following conditions: 100 mg of adsorbent, at 25 °C under a flow of 100 ml/min of CO2, atmospheric pressure and the adsorption variation in time 10-210 min. The X-ray diffraction with the transmission electron micrographs for the samples synthesized and functionalized, MCM-41 and SBA-15 showed characteristic peaks of hexagonal mesoporous structure formation, showing the structure thereof was obtained. The method used was efficient reflux according to XPS and elemental analysis, which showed the presence of amines in the starting materials. The functionalized SBA -15 samples were those that had potential as best adsorbent for CO2 capture when compared with samples of MCM-41, obtaining the maximum adsorption capacity for SBA-15-P sample
Resumo:
The separation methods are reduced applications as a result of the operational costs, the low output and the long time to separate the uids. But, these treatment methods are important because of the need for extraction of unwanted contaminants in the oil production. The water and the concentration of oil in water should be minimal (around 40 to 20 ppm) in order to take it to the sea. Because of the need of primary treatment, the objective of this project is to study and implement algorithms for identification of polynomial NARX (Nonlinear Auto-Regressive with Exogenous Input) models in closed loop, implement a structural identification, and compare strategies using PI control and updated on-line NARX predictive models on a combination of three-phase separator in series with three hydro cyclones batteries. The main goal of this project is to: obtain an optimized process of phase separation that will regulate the system, even in the presence of oil gushes; Show that it is possible to get optimized tunings for controllers analyzing the mesh as a whole, and evaluate and compare the strategies of PI and predictive control applied to the process. To accomplish these goals a simulator was used to represent the three phase separator and hydro cyclones. Algorithms were developed for system identification (NARX) using RLS(Recursive Least Square), along with methods for structure models detection. Predictive Control Algorithms were also implemented with NARX model updated on-line, and optimization algorithms using PSO (Particle Swarm Optimization). This project ends with a comparison of results obtained from the use of PI and predictive controllers (both with optimal state through the algorithm of cloud particles) in the simulated system. Thus, concluding that the performed optimizations make the system less sensitive to external perturbations and when optimized, the two controllers show similar results with the assessment of predictive control somewhat less sensitive to disturbances
Resumo:
The artisan fishing activity, which involves historical - cultural, environmental, social, political, economi c, among other factors, presents, nowadays, as an important source of income, creating jobs and food, contributing to the permanence of man in their own birthplace. However, the fish, considered one of the most perishable foods, requires a proper handling and conservation, from capture to its availability in the market, in order to slow the deterioration process. Thereby, this dissertation aims to study the effect of the manipulation practices on fish quality, from capture to its landing on the beach, resul ting from fisherman’s activity from Ponta Negra - Natal/RN. It also presents the purpose of analyzing the quality of the fish and propose recommendations for their proper handling and possible solutions to add value to the product, through the improvement of the quality and good handling practices. For this purpose, the methodology used was based on ergonomic analysis of their work through observational techniques and interactional with the focus group, the jangadeiros, to understand their activity and eval uated the freshness and quality of the fish by sensory analysis, and microbiological parameters and physicochemical from existing legislation Ordinance No. 185 of May 13, 1997 and RIISPOA - amended on December 1, 2007 and RDC No. 12, dated January 2, 2001. According to the results obtained in laboratory tests, it can be established, the acceptable quality of fish as the existing rules and regulations parameters , not getting significant deterioration caused by poor handling and improper storage of fish.
Resumo:
The distribution and mobilization of fluid in a porous medium depend on the capillary, gravity, and viscous forces. In oil field, the processes of enhanced oil recovery involve change and importance of these forces to increase the oil recovery factor. In the case of gas assisted gravity drainage (GAGD) process is important to understand the physical mechanisms to mobilize oil through the interaction of these forces. For this reason, several authors have developed physical models in laboratory and core floods of GAGD to study the performance of these forces through dimensionless groups. These models showed conclusive results. However, numerical simulation models have not been used for this type of study. Therefore, the objective of this work is to study the performance of capillary, viscous and gravity forces on GAGD process and its influence on the oil recovery factor through a 2D numerical simulation model. To analyze the interplay of these forces, dimensionless groups reported in the literature have been used such as Capillary Number (Nc), Bond number (Nb) and Gravity Number (Ng). This was done to determine the effectiveness of each force related to the other one. A comparison of the results obtained from the numerical simulation was also carried out with the results reported in the literature. The results showed that before breakthrough time, the lower is the injection flow rate, oil recovery is increased by capillary force, and after breakthrough time, the higher is the injection flow rate, oil recovery is increased by gravity force. A good relationship was found between the results obtained in this research with those published in the literature. The simulation results indicated that before the gas breakthrough, higher oil recoveries were obtained at lower Nc and Nb and, after the gas breakthrough, higher oil recoveries were obtained at lower Ng. The numerical models are consistent with the reported results in the literature