86 resultados para Biocida e corrosão


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The biofilms microbial forms of association are responsible for generating, accelerating and / or induce the process of corrosion. The damage generated in the petroleum industry for this type of corrosion is significatives, representing major investment for your control. The aim of this study was to evaluate such tests antibiograms the effects of extracts of Jatropha curcas and essential oil of Lippia gracilis Schauer on microrganisms isolated from water samples and, thereafter, select the most effective natural product for further evaluation of biofilms formed in dynamic system. Extracts of J. curcas were not efficient on the complete inhibition of microbial growth in tests type antibiogram, and essential oil of L. gracilis Schauer most effective and determined for the other tests. A standard concentration of essential oil of 20 μL was chosen and established for the evaluation of the biofilms and the rate of corrosion. The biocide effect was determined by microbial counts of five types of microorganisms: aerobic bacteria, precipitating iron, total anaerobic, sulphate reducers (BRS) and fungi. The rate of corrosion was measured by loss of mass. Molecular identification and scanning electron microscopy (SEM) were performed. The data showed reduction to zero of the most probable number (MPN) of bacteria precipitating iron and BRS from 115 and 113 minutes of contact, respectively. There was also inhibited in fungi, reducing to zero the rate of colony-forming units (CFU) from 74 minutes of exposure. However, for aerobic and anaerobic bacteria there was no significant difference in the time of exposure to the essential oil, remaining constant. The rate of corrosion was also influenced by the presence of oil. The essential oil of L. gracilis was shown to be potentially effective

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The biofilms microbial forms of association are responsible for generating, accelerating and / or induce the process of corrosion. The damage generated in the petroleum industry for this type of corrosion is significatives, representing major investment for your control. The aim of this study was to evaluate such tests antibiograms the effects of extracts of Jatropha curcas and essential oil of Lippia gracilis Schauer on microrganisms isolated from water samples and, thereafter, select the most effective natural product for further evaluation of biofilms formed in dynamic system. Extracts of J. curcas were not efficient on the complete inhibition of microbial growth in tests type antibiogram, and essential oil of L. gracilis Schauer most effective and determined for the other tests. A standard concentration of essential oil of 20 μL was chosen and established for the evaluation of the biofilms and the rate of corrosion. The biocide effect was determined by microbial counts of five types of microorganisms: aerobic bacteria, precipitating iron, total anaerobic, sulphate reducers (BRS) and fungi. The rate of corrosion was measured by loss of mass. Molecular identification and scanning electron microscopy (SEM) were performed. The data showed reduction to zero of the most probable number (MPN) of bacteria precipitating iron and BRS from 115 and 113 minutes of contact, respectively. There was also inhibited in fungi, reducing to zero the rate of colony-forming units (CFU) from 74 minutes of exposure. However, for aerobic and anaerobic bacteria there was no significant difference in the time of exposure to the essential oil, remaining constant. The rate of corrosion was also influenced by the presence of oil. The essential oil of L. gracilis was shown to be potentially effective

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The corrosive phenomenon on reinforced concrete structures is one of the most founded pathologies on the coastal area. With the objective to prevent the process development, or even, retard its beginning, it was studied the application of inorganic covering over concrete surfaces, after its cure, as well as, evaluate the efficiency of the covering applied on the concrete in reducing its porosity of concrete preventing the entrance of aggressive agents to preserve the integrity of the existing armor inside it, comparing the result obtained with the body-of-proof reference, that didn´t receive covering protection. On the concrete production it was used Portland Cement CP II 32, coarse aggregate, fine aggregate and water from the local distributive. Two types of covering were used, one resin based of silicon and solvent and other white cement based, selected sands and acrylic resin. The concrete mixture adopted was 1:1,5:2,5 (cement, fine aggregate, coarse aggregate) and 0.50 water/cement ratio. With the concrete on fresh state was made the experiment test to determinate the workability. On the hardened state was made the concrete resistance experiment, absorption of water and electrochemical experiments, through polarization curves. Also was held optical microscopy and Scanning Electron Microscopy experiments to analyze the layer of the covering applied to the concrete surface and the interface between the concrete and the layer. The obtained results shows that the covering applied to the concrete surface didn´t affect the resistance towards compression. On the absorption of water occurred a diminution of the percentage absorbed, improving the concrete development by making it more impermeable towards the entrance of aggressive agents. The electrochemical experiment results confirmed the water absorption results; the body-of-proof covered presented larger protection towards the development of corrosives process and retarded the evolution of the corrosive phenomenon

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In general, among the corrosion inhibitors surfactants are the most commonly used compounds, because they are significantly effective by forming protective films on anodic and cathodic areas. In this study, microemulsions containing he biodegradable saponified coconut oil as surfactant (SME-OCS) was used as green corrosion inhibitors. With this purpose, methanolic extracts of Ixora coccinea Linn (IC) and a polar fraction rich in alkaloids (FA) obtained from Croton cajucara Benth solubilized in the SME-OCS system were examined in the presence of AISI 1020 carbon steel, in saline solution (NaCl 3,5 %). The efficiency of corrosion inhibition of IC and FA were evaluated in the following microemulsions: SME-OCS-IC and SME-OCS-FA. The microemulsion system SME-OCS in the presence and absence of IC and FA was assessed by measurements of weight loss and the electrochemical method of polarization resistance, with variation in the concentration of IC and FA (50 - 400 ppm), showing significant results of corrosion inhibition (83,6 % SME-OCS; 92,2 % SME-OCS-FA; and 95,3 % SME-OCS-IC)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the search for products that act as corrosion inhibitors and do not cause environmental, impact the use of plant extracts as corrosion inhibitors is becoming a promising alternative. In this work the efficiency of polar extracts (ethanol extracts) obtained from the plants Anacardium occidentale Linn (AO) and Phyllantus amarus Schum. & Thonn (PA) as corrosion inhibitors were evaluated in different concentrations. For that AO and PA extracts were solubilized in the microemulsion systems (SME) containing saponified coconut oil as surfactant (SME -OCS and SME-OCS-1) in saline (NaCl 3,5 %) solution, which was also used as electrolyte. Both SME-OCS and SME-OCS-1 were characterized by surface tension and viscosity methods showing a Newtonian fluid behavior. The SME-OCS and SME-OCS-1 systems satisfactorily solubilized the polar extracts AO and PA with measurements carried out by ultraviolet spectroscopy. The measurements of corrosion inhibition efficiencies were performed by the electrochemical linear polarization resistance (LPR) technique as well as weight loss, on the surface of AISI 1020 carbon steel. The maximum corrosion inhibition efficiencies were determined by extrapolation of Tafel plots, showing the following values: 95,6 % for the system SME-OCS-AO, 98,9 % for the system SME-OCS-AO-1 and 93,4 % for the system SME-OCS-PA

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main problem on the exploration activity on petroleum industry is the formation water resulted on the fields producing. The aggravating of this problem is correlated with the advancing technologies used on the petroleum extractions and on its secondary approach objecting the reobtainment of this oil. Among the main contaminants of the water formation are corrosives gases such as: O2, CO2 and H2S, some solids in suspension and dissolved salts. Concerning to those gases the CO2 is the one that produce significant damage for carbon steel on corrosion process of the petroleum and gas industries. Corrosion inhibitors for carbon steel in formation water is one of the most used agents in control of those damages. In this context, the poor investigations of carbon steel corrosion proceeding from solids in suspension is an opened field for studies. On this work the inhibitor effect of the commercial CORRTREAT 703 was evaluated on some specific solids in suspension at saline medium containing 10.000 ppm of de-aerated chloride using CO2 until non oxygen atmosphere been present. For that, quartz, calcium carbonate, magnetite and iron sulphide were subjected to this investigation as the selected solids. The effect of this inhibitor on corrosion process correlated with those specific solids, was measured using electrochemical (resistance of linear polarization and galvanic pair) and gravimetrical techniques. During all the experimental work important parameters were monitored such as: pH, dissolved oxygen, temperature, instantaneous corrosion rate and galvanic current. According to the obtained results it was proved that the suspension solids calcium carbonate and iron sulphide decrease the corrosion process in higher pH medium. Meanwhile the quartz and magnetite been hardness increase corrosion by broking of the passive layer for erosion. In the other hand, the tested inhibitor in concentration of 50 ppm, showed to be effective (91%) in this corrosion process

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis has as objective presents a methodology to evaluate the behavior of the corrosion inhibitors sodium nitrite, sodium dichromate and sodium molybdate, as well as your mixture, the corrosion process for the built-in steel in the reinforced concrete, through different techniques electrochemical, as well as the mechanical properties of that concrete non conventional. The addition of the inhibitors was studied in the concrete in the proportions from 0.5 to 3.5 % regarding the cement mass, isolated or in the mixture, with concrete mixture proportions of 1.0:1.5:2.5 (cement, fine aggregate and coarse aggregate), superplasticizers 2.0 % and 0.40 water/cement ratio. In the modified concrete resistance rehearsals they were accomplished to the compression, consistence and the absorption of water, while to analyze the built-in steel in the concrete the rehearsals of polarization curves they were made. They were also execute, rehearsals of corrosion potential and polarization resistance with intention of diagnose the beginning of the corrosion of the armors inserted in body-of-proof submitted to an accelerated exhibition in immersion cycle and drying to the air. It was concluded, that among the studied inhibitors sodium nitrite , in the proportion of 2.0 % in relation to the mass of the cement, presented the best capacity of protection of the steel through all the studied techniques and that the methodology and the monitoring techniques used in this work, they were shown appropriate to evaluate the behavior and the efficiency of the inhibitors

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the increasing of demand for natural gas and the consequent growth of the pipeline networks, besides the importance of transport and transfer of oil products by pipeline, and when it comes to product quality and integrity of the pipeline there is an important role regarding to the monitoring internal corrosion of the pipe. This study aims to assess corrosion in three pipeline that operate with different products, using gravimetric techniques and electrical resistance. Chemical analysis of residues originated in the pipeline helps to identify the mechanism corrosive process. The internal monitoring of the corrosion in the pipelines was carried out between 2009 and 2010 using coupon weight loss and electrical resistance probe. Physico-chemical techniques of diffraction and fluorescence X-rays were used to characterize the products of corrosion of the pipelines. The corrosion rate by weight loss was analyzed for every pipeline, only those ones that has revealed corrosive attack were analyzed located corrosion rate. The corrosion potential was classified as low to pipeline gas and ranged from low to severe for oil pipelines and the pipeline derivatives. Corrosion products were identified as iron carbonate, iron oxide and iron sulfide

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crude oil has between 0.04 up to 5% of sulphur, the higher the oil the higher the sulphur levels. Sulphur usually gives problems such as corrosion in refinery, and once burnt produces SO2 that goes to atmosphere. This work aim to investigate the capacity of Rhodococcus rhodochrous (NRRL B-2149) to metabolize the model compound 4-methyldibenzotiophene (4-MDBT), to remove the sulphur and transform it in 2-hydroxybiphenyl (2-HBF) and sulphite using the 4S pathway. Kynetic runs were carried out in shaker at 120 rpm and 32°C. Samples were taken every 12h to assay substrate consume as well as cells production using HPLC. Results showed that R. rhodochrous NRRL B-2149 can use the 4S pathway in order to remove sulphur without change the carbon chain of the molecule as well as that cells and 4-MDBT affects the product formation. The production of 2-hydroxybiphenyl has interest for industry once it is a potent biocide. However, evaluation is necessary in order to obtain better results compatible with industry needs

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An interesting development in surfactants science and technology is their application as corrosion inhibitors, since they act as protective films over anodic and cathodic surfaces. This work aims to investigate the efficiency of saponified coconut oil (SCO) as corrosion inhibitor and of microemulsified system (SCO + butanol + kerosene oil + distilled water), in saline medium, using an adapted instrumented cell, via techniques involving linear polarization resistance (LPR) and mass loss coupons (MLC). For this, curves of efficiency versus SCO concentration (ranging between 0 and 75 ppm) have been constructed. According to the obtained results, the following efficiency levels were reached with OCS: 98% at a 75 ppm concentration via the LPR method and 95% at 75 ppm via the MLC method. The microemulsified system, for a concentration of 15 ppm of SCO, obtained maximum inhibition of 97% (LPR) and 93% (MLC). These data indicate that it is possible to optimize the use of SCO in similar applications. Previous works have demonstrated that maximal efficiencies below 90% are attained, typically 65% as free molecules and 77% in microemulsified medium, via the LPR method in a different type of cell. Therefore, it can be concluded that the adapted instrumented cell (in those used methods) showed to be an important tool in this kind of study and the SCO was shown effective in the inhibition of the metal

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Corrosion inhibitors in solution are utilized to minimize processes from corrosion in steel. Of the present dissertation was evaluated the efficiency by inhibition from the surfactant saponified coconut oil (OCS) in the carbon steel 1020 through in linear polarization electrochemistry technique, well as, studied the process from adsorption through from the isotherms from Langmuir, Frumkin and Temkin. The corrosion current was determined through in Tafel extrapolation from the curves in the polarization, and then, was calculated the efficiency in the inhibitor to each concentration and temperature. Were studied four concentrations (12,5 ppm, 25 ppm, 50 ppm, and 75 ppm) in the inhibitor OCS and one in the NaCl salt (10.000 ppm) in six temperatures (301 K, 308 K, 313 K, 318 K, 323 K, and 328 K) in triplicate. By the results obtained observed that the technique applied can evaluated with rapidity and efficiency corrosion inhibitors. In relation to the isotherms, the than best appropriated was the in Langmuir and in the concentrations studied, the that obtained the best efficiency was the concentration of 75 ppm

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Corrosion is an important phenomenon that frequently occurs in the oil industry, causing surface ablation, such as it happens on the internal surfaces of oil pipes. This work aims to obtain new systems to reduce this specific problem. The surfactants SDS, CTAB, and UNITOL L90 (in micellar and microemulsionated systems) were used as corrosion inhibitors. The systems were obtained using a C/S ratio of 2, butanol as cosorfactant, kerosene as oil phase and, as water phase, NaCl solutions of 0.5M with pH = 2, 4, and 7. Microemulsion regions were found both for direct and inverse micelles. SDS had the higher microemulsion region and the area was not dependent of pH. The study of micellization of these surfactans in the liquid-gas interface was carried out via the determination of CMC from surface tension measurements. Regarding microemulsionated systems, in the case of CTAB, CMC increased when pH was increased, being constant for SDS and UNITOL L90. Concerning micellar systems, increase in pH caused decrease and increase in CMC for SDC and CTAB, respectively. In the case of UNITOL L90, CMC was practically constant, but increased for pH = 4. The microemulsionated systems presented higher CMC values, except for UNITOL L90 L90. The negative values of free energy of micellization indicated that the process of adsorption was spontaneous. The results also indicated that, comparing microemulsionated to systems, adsorption was less spontaneous in the case of SDS and CTAB, while it did not change for UNITOL L90. SAXS experiments indicated that micelle geometry was spherical, existing also as halter and flat micelles, resuting in a better inght on the adsorption at the liquid-solid interface. Efficiency of corrosion inhibition as determined by electrochemical measurements, from corrosion currents calculated from Tafel extrapolation indicuting heat showed surfactants to be efficient even at low concentrations. Equilibrium isotherm data were fitted to the Freundlich model, indicating that surfactant adsorption occurs in the form of multilayers

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Corrosion inhibition efficiency of saponified coconut oil (SCO) and sodium dodecilbenzene sulfonate (DBS) surfactants in AISI 1020 carbon steel was evaluated by electrochemical methods. These surfactants were also evaluated as microemulsion systems (SCO-ME and DBS-ME), of O/W type (water-rich microemulsion), in a Winsor IV region. They were obtained according to the following composition: 15% SCO, 15% butanol (30% Co-surfactant/Surfactant C/T), 10% organic phase (FO, kerosene) and 60% aqueous phase (FA). These systems were also used to solubilize the following nitrogenated substances: Diphenylcarbazide (DC), 2,4-dinitro-phenyl-thiosemicarbazide (TSC) and the mesoionic type compound 1,3,4-triazolium-2-thiolate (MI), that were investigated with the purpose of evaluating their anticorrosive effects. Comparative studies of carbon steel corrosion inhibition efficiencies of free DBS and DBS-ME, in brine and acidic media (0.5%), showed that DBS presents better inhibition results in acidic media (free DBS, 89% and DBS-ME, 93%). However, the values obtained for DBS in salted solution (72% free DBS and 77% DBS-ME) were similar to the ones observed for the SCO surfactant in brine (63% free SCO and 74% SCO-ME). Analysis of corrosion inhibition of the nitrogenated substances that were solubilized in the SCO-ME microemulsion system by the linear polarization method in brine (0.5% NaCl) showed that such compounds are very efficient an corrosion inhibitors [DC-ME-SCO (92%), TSC-ME-SCO (93%) and MI-ME-SCO (94%)]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cutting fluids are lubricants used in metal-mechanical industries. Their complex composition varies according to the type of operation carried out, also depending on the metals under treatment or investigation. Due to the high amount of mineral oil produced in Northeastern Brazil, we have detected the need to better use this class of material. In this work, two novel formulations have been tested, both based on naphthenic mineral oil and additives, such as: an emulsifying agent (A), an anticorrosion agent (B), a biocide (C) and an antifoam agent (D). Each formulation was prepared by mixing the additives in the mineral oil at a 700-rpm stirring velocity for 10 min, at 25°C, employing a 24 factorial planning. The formulations were characterized by means of density, total acid number (TAN), viscosity, flash point and anticorrosion activity. In a subsequent study, oil-in-water emulsions were prepared from these novel formulations. The emulsions were analyzed in terms of stability, corrosion degree, percentage of foam formation, conductivity, accelerated stability and particle size. The samples were appropriately labeled, and, in special, two of them were selected for featuring emulsion properties which were closer to those of the standards chosen as references (commercial cutting oils). Investigations were undertaken on the ability of NaCl and CaCl2 to destabilize the emulsions, at concentrations of 2%, 5% and 10%, at an 800-rpm stirring velocity for 5 min and temperatures of 25º, 40º, 50º and 60ºC. The recovered oils were chemically altered by reincorporating the same additives used in the original formulations, followed by preparation of emulsions with the same concentrations as those of the initial ones. The purpose was to assess the possibility of reusing the recovered oil. The effluents generated during the emulsion destabilization step were characterized via turbidity index, contents of oil and grease, pH, and contents of anions and cations, observing compliance with the parameters established by the current environmental legislation (Brazil s CONAMA 357/05 resolution). It could be concluded that the formulations presented excellent physicochemical properties as compared to commercial cutting fluids, showing that the quality of the newly-prepared fluids is superior to that of the formulations available in the market, enabling technically and environmentally-safe applications

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays, the use of chemicals that satisfactorily meet the needs of different sectors of the chemical industry is linked to the consumption of biodegradable materials. In this context, this work contemplated biotechnological aspects with the objective of developing a more environmentally-friendly corrosion inhibitor. In order to achieve this goal, nanoemulsion-type systems (NE) were obtained by varying the amount of Tween 80 (9 to 85 ppm) a sortitan surfactant named polyoxyethylene (20) monooleate. This NE-system was analyzed using phase diagrams in which the percentage of the oil phase (commercial soybean oil, codenamed as OS) was kept constant. By changing the amount of Tween 80, several polar NE-OS derived systems (O/W-type nanoemulsion) were obtained and characterized through light scattering, conductivity and pH, and further subjected to electrochemical studies. The interfacial behavior of these NE-OS derived systems (codenamed NE-OS1, S2, S3, S4 and S5) as corrosion inhibitors on carbon steel AISI 1020 in saline media (NaCl 3.5%) were evaluated by measurement of Open Circuit Potential (OCP), Polarization Curves (Tafel extrapolation method) and Electrochemical Impedance Spectroscopy (EIS). The analyzed NE-OS1 and NE-OS2 systems were found to be mixed inhibitors with quantitative efficacy (98.6% - 99.7%) for concentrations of Tween 80 ranging between 9 and 85 ppm. According to the EIS technique, maximum corrosion efficiency was observed for some tested NE-OS samples. Additionaly to the electrochemical studies, Analysis of Variance (ANOVA) and Principal Component Analysis (PCA) were used, characterization of the nanoemulsion tested systems and adsorption studies, respectively, which confirmed the results observed in the experimental analyses using diluted NE-OS samples in lower concentrations of Tween 80 (0.5 1.75 ppm)