28 resultados para Advanced oxidation process
Resumo:
The soil contamination with petroleum is one of the major concern of industries operating in the field and also of environmental agencies. The petroleum consists mainly of alkanes and aromatic hydrocarbons. The most common examples of hydrocarbons polyaromatic are: naphthalene, anthracene, phenanthrene, benzopyrene and their various isomers. These substances cause adverse effects on human and the environment. Thus, the main objective of this work is to study the advanced oxidation process using the oxidant potassium permanganate (KMnO4) for remediation of soils contaminated with two polyaromatic hydrocarbons (PAHs): anthracene and phenanthrene. This study was conducted at bench scale, where the first stage was at batch experiment, using the variables: the time and oxidant dosage in the soil. The second stage was the remediation conducted in continous by a fix column, to this stage, the only variable was remediation time. The concentration of oxidant in this stage was based on the best result obtained in the tests at batch, 2,464 mg / L. The results of degradation these contaminants were satisfactory, at the following dosages and time: (a) 5g of oxidant per kg soil for 48 hours, it was obtained residual contaminants 28 mg phenanthrene and 1.25 mg anthracene per kg of soil and (b) for 7g of oxidant per kg soil in 48 hours remaining 24 mg phenanthrene and anthracene 0.77 mg per kg soil, and therefore below the intervention limit residential and industrial proposed by the State Company of Environmental Sao Paulo (CETESB)
Resumo:
The aim of this work is the treatment of produced water from oil by using electrochemical technology. Produced water is a major waste generated during the process of exploration and production in the oil industry. Several approaches are being studied aiming at the treatment of this effluent; among them can be cited the biological process and chemical treatments such as advanced oxidation process and electrochemical treatments (electrooxidation, electroflotation, electrocoagulation, electrocoagulation). This work studies the application of electrochemical technology in the treatment of the synthetic produced water effluent through the action of the electron, in order to remove or transform the toxic and harmful substances from the environment by redox reactions in less toxic substances. For this reason, we used a synthetic wastewater, containing a mixture H2SO4 0,5M and 16 HPAs, which are: naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo (a) anthracene, chrysene, benzo(b)fluoranthene, benzo(k) fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene, dibenzo(a, h)anthracene, benzo(g, h, i)perylene. Bulk electrochemical oxidation experiments were performed using a batch electrochemical reactor containing a pair of parallel electrodes, coupled with a power supply using a magnetic stirrer for favoring the transfer mass control. As anodic material was used, a Dimensionally Stable Anode (DSA) of Ti/Pt, while as cathode was used a Ti electrode. Several samples were collected at specific times and after that, the analysis of these samples were carried out by using Gas Chromatography Coupled to Mass Spectrometry (GC - MS) in order to determine the percentage of removal. The results showed that it was possible to achieve the removal of HPAs about 80% (in some cases, more than 80%). In addition, as an indicator of the economic feasibility of electrochemical treatment the energy consumption was analyzed for each hour of electrolysis, and based on the value kWh charged by ANEEL, the costs were estimated. Thus, the treatment costs of this research were quite attractive
Resumo:
With water pollution increment at the last years, so many progresses in researches about treatment of contaminated waters have been developed. In wastewaters containing highly toxic organic compounds, which the biological treatment cannot be applied, the Advanced Oxidation Processes (AOP) is an alternative for degradation of nonbiodegradable and toxic organic substances, because theses processes are generation of hydroxyl radical based on, a highly reactivate substance, with ability to degradate practically all classes of organic compounds. In general, the AOP request use of special ultraviolet (UV) lamps into the reactors. These lamps present a high electric power demand, consisting one of the largest problems for the application of these processes in industrial scale. This work involves the development of a new photochemistry reactor composed of 12 low cost black light fluorescent lamps (SYLVANIA, black light, 40 W) as UV radiation source. The studied process was the photo-Fenton system, a combination of ferrous ions, hydrogen peroxide, and UV radiation, it has been employed for the degradation of a synthetic wastewater containing phenol as pollutant model, one of the main pollutants in the petroleum industry. Preliminary experiments were carrier on to estimate operational conditions of the reactor, besides the effects of the intensity of radiation source and lamp distribution into the reactor. Samples were collected during the experiments and analyzed for determining to dissolved organic carbon (DOC) content, using a TOC analyzer Shimadzu 5000A. The High Performance Liquid Chromatography (HPLC) was also used for identification of the cathecol and hydroquinone formed during the degradation process of the phenol. The actinometry indicated 9,06⋅1018 foton⋅s-1 of photons flow, for 12 actived lamps. A factorial experimental design was elaborated which it was possible to evaluate the influence of the reactants concentration (Fe2+ and H2O2) and to determine the most favorable experimental conditions ([Fe2+] = 1,6 mM and [H2O2] = 150,5 mM). It was verified the increase of ferrous ions concentration is favorable to process until reaching a limit when the increase of ferrous ions presents a negative effect. The H2O2 exhibited a positive effect, however, in high concentrations, reaching a maximum ratio degradation. The mathematical modeling of the process was accomplished using the artificial neural network technique
Resumo:
The generation of wastes in most industrial process is inevitable. In the petroleum industry, one of the greatest problems for the environment is the huge amount of produced water generated in the oil fields. This wastewater is a complex mixture and present great amounts. These effluents can be hazardous to the environmental without adequate treatment. This research is focused in the analysis of the efficiencies of the flotation and photo-oxidation processes to remove and decompose the organic compounds present in the produced water. A series of surfactants derivated from the laurilic alcohol was utilized in the flotation to promote the separation. The experiments have been performed with a synthetic wastewater, carefully prepared with xylene. The experimental data obtained using flotation presented a first order kinetic, identified by the quality of the linear data fitting. The best conditions were found at 0.029 g.L-1 for the surfactant EO 7, 0.05 g.L-1 for EO 8, 0.07 g.L-1 for EO 9, 0.045 g.L-1 for EO 10 and 0.08 g.L-1 for EO 23 with the following estimated kinetic constants: 0.1765, 0.1325, 0.1210, 0.1531 and 0.1699 min-1, respectively. For the series studied, the most suitable surfactant was the EO 7 due to the lower reagent onsumption, higher separation rate constant and higher removal efficiency of xylene in the aqueous phase (98%). Similarly to the flotation, the photo-Fenton process shows to be efficient for degradation of xylene and promoting the mineralization of the organic charge around 90% and 100% in 90 min
Resumo:
Effluents from pesticide industries have great difficulty to decontaminate the environment and, moreover, are characterized by high organic charge and toxicity. The research group Center for Chemical Systems Engineering (CESQ) at the Department of Chemical Engineering of Polytechnical School of University of São Paulo and Department of Chemical Engineering, Federal University of Rio Grande do Norte have been applying the Advanced Oxidation Processes (AOP's) for the degradation of various types of pollutants. These processes are based on the generation of hydroxyl radicals, highly reactive substances. Thus, this dissertation aims to explore this process, since it has been proven to be quite effective in removing organic charge. Therefore, it was decided by photo-Fenton process applied to the degradation of the fungicide Thiophanate methyl in aqueous system using annular reactor (with lamp Philips HPLN 125W) and solar. The samples were collected during the experiment and analyzed for dissolved organic carbon (TOC) using a Shimadzu TOC (Shimadzu 5050A e VCP). The Doehlert experimental design has been used to evaluate the influence of ultraviolet radiation, the concentrations of methyl thiophanate (C12H14N4O4S2), hydrogen peroxide (H2O2) and iron ions (Fe2+), among these parameters, was considered the best experimental conditions, [Fe2+] = 0.6 mmol/L and [H2O2] = 0.038 mol/L in EXP 5 experiment and in SOL 5 experiment, obtaining a percentage of TOC removal of 60% in the annular reactor and 75% in the solar reactor
Resumo:
Increasing concern with the environment, in addition to strict laws, has induced the industries to find altenatives to the treatment of their wastes. Actually, the oil industry has sought solutions to overcome a big environmental problem, i.e., oil field produced water being discharged to the sea. These effluents have organic compounds dissolved, such as polycyclic aromatic hydrocarbons, phenols, benzene, toluene, ethylbenzene and xylenes (BTEX). These compounds are difficult to be removed and have high toxicity. The advanced oxidation processes - AOP are effective to degradation of these organic compounds, because they generate hydroxyl radicals with high potential of oxidation. This work includes the reactor photochemical development applied in the photodegradation treatment (by photo-Fenton process) of wastewaters containing organic compounds dissolved, aiming at treatment and recovery the oil field produced water. The studied reactor allowed the evaluation of two ultraviolet radiation sources that is the main factor to describe the feasibility of the photo¬Fenton treatment, i.e., sun and black light fluorescent lamps, and other relevant variables the process: concentration of reagents, irradiated area and also various reactor configurations to maximize the use of radiation. The organic matter degradation was verified with samples collected during the experimental and analyzed with a total organic carbon analyzer (TOC), which expressed the results in terms of mgC/L. The solar radiation was more effective than radiation from the lamps. it's an important factor for the operation costs cutting. Preliminary experiments applied to oil field produced water treatment have showed satisfactory results, reducing up to 76 % of organic matter
Resumo:
Increasing concern with the environment, in addition to strict laws, has induced the industries to find alternatives to the treatment of their wastes. Actually, the oil industry has sought solutions to overcome a big environmental problem, i.e., oil field produced water being discharged to the sea. These effluents have organic compounds dissolved, such as polycyclic aromatic hydrocarbons, phenols, benzene, toluene, ethylbenzene and xylenes (BTEX). These compounds are difficult to be removed and have high toxicity. The advanced oxidation processes - AOP are effective to degradation of these organic compounds, because they generate hydroxyl radicals with high potential of oxidation. This work includes the reactor photochemical development applied in the photodegradation treatment (by photo-Fenton process) of wastewaters containing organic compounds dissolved, aiming at treatment and recovery the oil field produced water. The studied reactor allowed the evaluation of two ultraviolet radiation sources that is the main factor to describe the feasibility of the photo- Fenton treatment, i.e., sun and black light fluorescent lamps, and other relevant variables the process: concentration of reagents, irradiated area and also various reactor configurations to maximize the use of radiation. The organic matter degradation was verified with samples collected during the experimental and analyzed with a total organic carbon analyzer (TOC), which expressed the results in terms of mgC/L. The solar radiation was more effective than radiation from the lamps. It's an important factor for the operation costs cutting. Preliminary experiments applied to oil field produced water treatment have showed satisfactory results, reducing up to 76 % of organic matter
Resumo:
The generation of wastes in most industrial process is inevitable. In the petroleum industry, one of the greatest problems for the environment is the huge amount of produced water generated in the oil fields. This wastewater is a complex mixture and present great amounts. These effluents can be hazardous to the environmental without adequate treatment. This research is focused in the analysis of the efficiencies of the flotation and photo-oxidation processes to remove and decompose the organic compounds present in the produced water. A series of surfactants derivated from the laurilic alcohol was utilized in the flotation to promote the separation. The experiments have been performed with a synthetic wastewater, carefully prepared with xylene. The experimental data obtained using flotation presented a first order kinetic, identified by the quality of the linear data fitting. The best conditions were found at 0.029 g.L-1 for the surfactant EO 7, 0.05 g.L-1 for EO 8, 0.07 g.L-1 for EO 9, 0.045 g.L-1 for EO 10 and 0.08 g.L-1 for EO 23 with the following estimated kinetic constants: 0.1765, 0.1325, 0.1210, 0.1531 and 0.1699 min-1, respectively. For the series studied, the most suitablesurfactant was the EO 7 due to the lower reagent consumption, higher separation rate constant and higher removal efficiency of xylene in the aqueous phase (98%). Similarly to the flotation, the photo-Fenton process shows to be efficient for degradation of xylene and promoting the mineralization of the organic charge around 90% and 100% in 90 min
Resumo:
Organic dyes have been widely used in various branches of dyeing industries. These compounds are known to be very toxic, mutagenic, cancinogenic only cause aesthetic pollution and irreversible damage to aquatic ecosystems and human health. Are recalcitrant contaminants due to its high stability and resistance to photobleaching and bio. Given this context, the search for technologies that can minimize the effects of such pollutants is required. In recent decades the Electrochemical Oxidation Process Advanced (PEOAs) based on the generation of strongly oxidizing species (radicals ●OH) offer promising approaches for the prevention of problems caused by industrial effluents. This study analyzed the degradation and mineralization of textile dyes and the study of a real effluent in order to assess the feasibility of PEOAs: Electro-Fenton (EF), Photo Electro-Fenton (PEF) and anodic oxidation (AO), and these methods still was studied the Solar Fotoelectro-Fenton (SPEF) in a pre-pilot plant, in order to study the electrochemical treatment on an industrial scale. In the study has compared the effect of PEOAs in the removal of color, TOC and decay kinetics of degradation of the compounds, and also for using the Congo Red (CR) SPEF studies were performed mineralization current efficiency (MCE). The best results are given to the treatment of the PEF for all the studied dyes. From the results it was possible to choose the PEF as the most effective and promising for application of treatment when compared to other methods of treatment, and prove from SPEF that the process can be used in industrial scales, since this method PEF has been improved and solar irradiation replaced the UVA lamp.
Resumo:
Organic dyes have been widely used in various branches of dyeing industries. These compounds are known to be very toxic, mutagenic, cancinogenic only cause aesthetic pollution and irreversible damage to aquatic ecosystems and human health. Are recalcitrant contaminants due to its high stability and resistance to photobleaching and bio. Given this context, the search for technologies that can minimize the effects of such pollutants is required. In recent decades the Electrochemical Oxidation Process Advanced (PEOAs) based on the generation of strongly oxidizing species (radicals ●OH) offer promising approaches for the prevention of problems caused by industrial effluents. This study analyzed the degradation and mineralization of textile dyes and the study of a real effluent in order to assess the feasibility of PEOAs: Electro-Fenton (EF), Photo Electro-Fenton (PEF) and anodic oxidation (AO), and these methods still was studied the Solar Fotoelectro-Fenton (SPEF) in a pre-pilot plant, in order to study the electrochemical treatment on an industrial scale. In the study has compared the effect of PEOAs in the removal of color, TOC and decay kinetics of degradation of the compounds, and also for using the Congo Red (CR) SPEF studies were performed mineralization current efficiency (MCE). The best results are given to the treatment of the PEF for all the studied dyes. From the results it was possible to choose the PEF as the most effective and promising for application of treatment when compared to other methods of treatment, and prove from SPEF that the process can be used in industrial scales, since this method PEF has been improved and solar irradiation replaced the UVA lamp.
Resumo:
Advanced Oxidation Processes (AOP) are techniques involving the formation of hydroxyl radical (HO•) with high organic matter oxidation rate. These processes application in industry have been increasing due to their capacity of degrading recalcitrant substances that cannot be completely removed by traditional processes of effluent treatment. In the present work, phenol degrading by photo-Fenton process based on addition of H2O2, Fe2+ and luminous radiation was studied. An experimental design was developed to analyze the effect of phenol, H2O2 and Fe2+ concentration on the fraction of total organic carbon (TOC) degraded. The experiments were performed in a batch photochemical parabolic reactor with 1.5 L of capacity. Samples of the reactional medium were collected at different reaction times and analyzed in a TOC measurement instrument from Shimadzu (TOC-VWP). The results showed a negative effect of phenol concentration and a positive effect of the two other variables in the TOC degraded fraction. A statistical analysis of the experimental design showed that the hydrogen peroxide concentration was the most influent variable in the TOC degraded fraction at 45 minutes and generated a model with R² = 0.82, which predicted the experimental data with low precision. The Visual Basic for Application (VBA) tool was used to generate a neural networks model and a photochemical database. The aforementioned model presented R² = 0.96 and precisely predicted the response data used for testing. The results found indicate the possible application of the developed tool for industry, mainly for its simplicity, low cost and easy access to the program.
Resumo:
Advanced Oxidation Processes (AOP) are techniques involving the formation of hydroxyl radical (HO•) with high organic matter oxidation rate. These processes application in industry have been increasing due to their capacity of degrading recalcitrant substances that cannot be completely removed by traditional processes of effluent treatment. In the present work, phenol degrading by photo-Fenton process based on addition of H2O2, Fe2+ and luminous radiation was studied. An experimental design was developed to analyze the effect of phenol, H2O2 and Fe2+ concentration on the fraction of total organic carbon (TOC) degraded. The experiments were performed in a batch photochemical parabolic reactor with 1.5 L of capacity. Samples of the reactional medium were collected at different reaction times and analyzed in a TOC measurement instrument from Shimadzu (TOC-VWP). The results showed a negative effect of phenol concentration and a positive effect of the two other variables in the TOC degraded fraction. A statistical analysis of the experimental design showed that the hydrogen peroxide concentration was the most influent variable in the TOC degraded fraction at 45 minutes and generated a model with R² = 0.82, which predicted the experimental data with low precision. The Visual Basic for Application (VBA) tool was used to generate a neural networks model and a photochemical database. The aforementioned model presented R² = 0.96 and precisely predicted the response data used for testing. The results found indicate the possible application of the developed tool for industry, mainly for its simplicity, low cost and easy access to the program.
Resumo:
Oilseeds are a high-value natural resource, due to its use as a substitute for petroleum. However, the storage time can reduce seed viability and oil quality. Therefore, scientific efforts have been made to provide a increment of storage time, germination rates and plant establishment of high-value oilseeds. The seedling establishment depends of the plant pass over the functional transition stage, characterized by a metabolic change from heterotrophic condition to autotrophic one. The storage oil mobilization is performed by β-oxidation process and the glyoxylate cycle. Also, the functional transition involves acclimation to photosynthetic condition, which generally includes the participation of antioxidant system and the reactive oxygen species, the latter are produced in various reactions of primary and secondary metabolism. In the present study, Catalase was inhibited during the functional transition of sunflower and safflower, after were performed many analyzes to elucidate the effects caused on the SOD and APX antioxidant systems. Also, were checked the changes in expression pattern of the glyoxylate cycle enzymes markers, ICL and MLS. It was observed that after CAT inhibition, the SOD and APX antioxidant systems allow the seedling establishment. Besides, was verified that both oilseeds can be accelerate the reverse mobilization and the photosynthetic establishment when Catalase activity has dramatically decreased
Resumo:
It seeks to find an alternative to the current tantalum electrolytic capacitors in the market due to its high cost. Niobium is a potential substitute, since both belong to the same group of the periodic table and because of this have many similar physical and chemical properties. Niobium has several technologically important applications, and Brazil has the largest reserves, around 96%. There are including niobium in reserves of tantalite and columbite in Rio Grande do Norte. These electrolytic capacitors have high capacitance specifies, ie they can store high energy in small volumes compared to other types of capacitors. This is the main attraction of this type of capacitor because is growing demand in the production of capacitors with capacitance specifies increasingly high, this because of the miniaturization of various devices such as GPS devices, televisions, computers, phones and many others. The production route of the capacitor was made by powder metallurgy. The initial niobium powder supplied by EEL-USP was first characterized by XRD, SEM, XRF and laser particle size, to then be sieved into three particle size, 200, 400 e 635mesh. The powders were then compacted and sintered at 1350, 1450 and 1550°C using two sintering time 30 and 60min. Sintering is one of the most important parts of the process as it affects properties as porosity and surface cleaning of the samples, which greatly affected the quality of the capacitor. The sintered samples then underwent a process of anodic oxidation, which created a thin film of niobium pentóxido over the whole porous surface of the sample, this film is the dielectric capacitor. The oxidation process variables influence the performance of the film and therefore the capacitor. The samples were characterized by electrical measurements of capacitance, loss factor, ESR, relative density, porosity and surface area. After the characterizations was made an annealing in air ate 260ºC for 60min. After this treatment were made again the electrical measurements. The particle size of powders and sintering affected the porosity and in turn the specific area of the samples. The larger de area of the capacitor, greater is the capacitance. The powder showed the highest capacitance was with the smallest particle size. Higher temperatures and times of sintering caused samples with smaller surface area, but on the other hand the cleaning surface impurities was higher for this cases. So a balance must be made between the gain that is achieved with the cleaning of impurities and the loss with the decreased in specific area. The best results were obtained for the temperature of 1450ºC/60min. The influence of annealing on the loss factor and ESR did not follow a well-defined pattern, because their values increased in some cases and decreased in others. The most interesting results due to heat treatment were with respect to capacitance, which showed an increase for all samples after treatment
Resumo:
Photo-oxidation processes of toxic organic compounds have been widely studied. This work seeks the application of the photo-Fenton process for the degradation of hydrocarbons in water. The gasoline found in the refinery, without additives and alcohol, was used as the model pollutant. The effects of the concentration of the following substances have been properly evaluated: hydrogen peroxide (100-200 mM), iron ions (0.5-1 mM) and sodium chloride (200 2000 ppm). The experiments were accomplished in reactor with UV lamp and in a falling film solar reactor. The photo-oxidation process was monitored by measurements of the absorption spectra, total organic carbon (TOC) and chemical oxygen demand (COD). Experimental results demonstrated that the photo-Fenton process is feasible for the treatment of wastewaters containing aliphatic hydrocarbons, inclusive in the presence of salts. These conditions are similar to the water produced by the petroleum fields, generated in the extraction and production of petroleum. A neural network model of process correlated well the observed data for the photooxidation process of hydrocarbons