17 resultados para (K37 K38) n TOC
Resumo:
Today a major responsibility for the contamination of soil and groundwater and surface water are establishments known as gas stations of fuel which has attracted increasing attention from both the general population as the state agencies of environmental control due to leaks in storage tanks and mainly to disruption of pipe corrosion of tanks and pumping. Other services, like oil changes and car wash are also causes for concern in this type of establishment. These leaks can cause or waste produced, and the contamination of aquifers, serious health problems and public safety, since most of these stations located in urban areas. Based on this, the work was to evaluate soil contamination of a particular service station and fuel sales in the city of Natal, through the quantification of heavy metals like Cd, Cu, Cr, Ni, Pb, Zn of total organic carbon (TOC) and organic matter using different techniques such as optical emission spectrometry with inductively coupled plasma source (ICP OES), Total Organic Carbon analyzer and gravimetric analysis respectively. And also to characterize the soil through particle size analysis. Samples were taken in 21 georeferenced points and collected in the same period. The soils sampled in sampling stations P3, P5, P6, P10, P11, P12, P13, P14, P15, P17, P18 and P20 showed the smallest size fractions ranging from fine sand to medium sand. The other study sites ranged from fine sand to medium sand, except the point P8 showed that only the type size medium sand and P19, indicating a particle size of the coarse type. The small correlation of organic matter with the elements studied in this work suggests that these are not of anthropogenic origin but geochemical support
Resumo:
The production of petroleum is frequently accomplished with great volumes of water, that it is carried of the underground with the oil. It is a challenge of the present century the development of technologies that allow the use of waste water for purposes that consume great amounts of water and don't demand as rigid as the one of the drinking water requirements. The solar distillation has been configuring as an alternative of clean technology for desalination of brine and saline. Besides causing the minimum possible damage to the environment, it takes advantage of an abundant and free energy source: the solar energy. That study aims to develop a Solar Distillator for treatment of the produced water of the oil wells, to obtain an efluent to use in agriculture and vapor generation. The methodology for collection, conservation and analysis of the physical-chemical parameters obeyed the norms in APHA (1995). The sampling was of the composed type. Experiments were accomplished in the solar distillation pilot and simulation in thermostatic bathing. The operation was in batch system and for periods of 4, 6 and 12 h. The developed Distillator is of the type simple effect of two waters. It was still tested two inclination angles for covering; 20º and 45º. The Distillator presented minimum of 2,85 L/m2d revenues and maximum of 7,14 L/m2d. The removals of salts were great than 98%. The removal of TOC in the simulation was great than 90%. In agreement with the data of energy and mass balance, it was verified that the developed solar Distillator presented compatible revenues with those found in literature for similar types. It can be inferred that the obtained distilled water assists to the requirements CONAMA in almost all the points and could be used for irrigation of cultures such as cotton and mamona. As the distilled water has characteristics of fresh water it can be used in the generation of vapor
Resumo:
With water pollution increment at the last years, so many progresses in researches about treatment of contaminated waters have been developed. In wastewaters containing highly toxic organic compounds, which the biological treatment cannot be applied, the Advanced Oxidation Processes (AOP) is an alternative for degradation of nonbiodegradable and toxic organic substances, because theses processes are generation of hydroxyl radical based on, a highly reactivate substance, with ability to degradate practically all classes of organic compounds. In general, the AOP request use of special ultraviolet (UV) lamps into the reactors. These lamps present a high electric power demand, consisting one of the largest problems for the application of these processes in industrial scale. This work involves the development of a new photochemistry reactor composed of 12 low cost black light fluorescent lamps (SYLVANIA, black light, 40 W) as UV radiation source. The studied process was the photo-Fenton system, a combination of ferrous ions, hydrogen peroxide, and UV radiation, it has been employed for the degradation of a synthetic wastewater containing phenol as pollutant model, one of the main pollutants in the petroleum industry. Preliminary experiments were carrier on to estimate operational conditions of the reactor, besides the effects of the intensity of radiation source and lamp distribution into the reactor. Samples were collected during the experiments and analyzed for determining to dissolved organic carbon (DOC) content, using a TOC analyzer Shimadzu 5000A. The High Performance Liquid Chromatography (HPLC) was also used for identification of the cathecol and hydroquinone formed during the degradation process of the phenol. The actinometry indicated 9,06⋅1018 foton⋅s-1 of photons flow, for 12 actived lamps. A factorial experimental design was elaborated which it was possible to evaluate the influence of the reactants concentration (Fe2+ and H2O2) and to determine the most favorable experimental conditions ([Fe2+] = 1,6 mM and [H2O2] = 150,5 mM). It was verified the increase of ferrous ions concentration is favorable to process until reaching a limit when the increase of ferrous ions presents a negative effect. The H2O2 exhibited a positive effect, however, in high concentrations, reaching a maximum ratio degradation. The mathematical modeling of the process was accomplished using the artificial neural network technique
Resumo:
Photo-oxidation processes of toxic organic compounds have been widely studied. This work seeks the application of the photo-Fenton process for the degradation of hydrocarbons in water. The gasoline found in the refinery, without additives and alcohol, was used as the model pollutant. The effects of the concentration of the following substances have been properly evaluated: hydrogen peroxide (100-200 mM), iron ions (0.5-1 mM) and sodium chloride (200 2000 ppm). The experiments were accomplished in reactor with UV lamp and in a falling film solar reactor. The photo-oxidation process was monitored by measurements of the absorption spectra, total organic carbon (TOC) and chemical oxygen demand (COD). Experimental results demonstrated that the photo-Fenton process is feasible for the treatment of wastewaters containing aliphatic hydrocarbons, inclusive in the presence of salts. These conditions are similar to the water produced by the petroleum fields, generated in the extraction and production of petroleum. A neural network model of process correlated well the observed data for the photooxidation process of hydrocarbons
Resumo:
At the cashew nut processing industry it is often the generation of wastewaters containing high content of toxic organic compounds. The presence of these compounds is due mainly to the so called liquid of the cashew nut (CNSL). CNSL, as it is commercially known in Brazil, is the liquid of the cashew nut. It looks like an oil with dark brown color, viscous and presents a high toxicity index due to the chemical composition, i.e. phenol compounds, such as anacardic acid, cardol, 2-methyl cardol and monophenol (cardanol). These compounds are bio resistant to the conventional treatments. Furthermore, the corresponding wastewaters present high content of TOC (total organic carbon). Therefore due to the high degree of toxicity it is very important to study and develop treatments of these wastewaters before discharge to the environmental. This research aims to decompose these compounds using advanced oxidative processes (AOP) based on the photo-Fenton system. The advantage of this system is the fast and non-selective oxidation promoted by the hydroxyl radicals (●OH), that is under determined conditions can totally convert the organic pollutants to CO2 and H2O. In order to evaluate the decomposition of the organic charge system samples of the real wastewater od a processing cashew nut industry were taken. This industry was located at the country of the state of Rio Grande do Norte. The experiments were carried out with a photochemical annular reactor equipped with UV (ultra violet) lamp. Based on preliminary experiments, a Doehlert experimental design was defined to optimize the concentrations of H2O2 and Fe(II) with a total of 13 runs. The experimental conditions were set to pH equal to 3 and temperature of 30°C. The power of the lamps applied was 80W, 125W and 250W. To evaluate the decomposition rate measures of the TOC were accomplished during 4 hours of experiment. According to the results, the organic removal obtained in terms of TOC was 80% minimum and 95% maximum. Furthermore, it was gotten a minimum time of 49 minutes for the removal of 30% of the initial TOC. Based on the obtained experimental results, the photo-Fenton system presents a very satisfactory performance as a complementary treatment of the wastewater studied
Resumo:
Effluents from pesticide industries have great difficulty to decontaminate the environment and, moreover, are characterized by high organic charge and toxicity. The research group Center for Chemical Systems Engineering (CESQ) at the Department of Chemical Engineering of Polytechnical School of University of São Paulo and Department of Chemical Engineering, Federal University of Rio Grande do Norte have been applying the Advanced Oxidation Processes (AOP's) for the degradation of various types of pollutants. These processes are based on the generation of hydroxyl radicals, highly reactive substances. Thus, this dissertation aims to explore this process, since it has been proven to be quite effective in removing organic charge. Therefore, it was decided by photo-Fenton process applied to the degradation of the fungicide Thiophanate methyl in aqueous system using annular reactor (with lamp Philips HPLN 125W) and solar. The samples were collected during the experiment and analyzed for dissolved organic carbon (TOC) using a Shimadzu TOC (Shimadzu 5050A e VCP). The Doehlert experimental design has been used to evaluate the influence of ultraviolet radiation, the concentrations of methyl thiophanate (C12H14N4O4S2), hydrogen peroxide (H2O2) and iron ions (Fe2+), among these parameters, was considered the best experimental conditions, [Fe2+] = 0.6 mmol/L and [H2O2] = 0.038 mol/L in EXP 5 experiment and in SOL 5 experiment, obtaining a percentage of TOC removal of 60% in the annular reactor and 75% in the solar reactor
Resumo:
The oil industry, experiencing a great economic and environmental impact, has increasingly invested in researches aiming a more satisfactory treatment of its largest effluent, i.e., produced water. These are mostly discarded at sea, without reuse and after a basic treatment. Such effluent contains a range of organic compounds with high toxicity and are difficult to remove, such as polycyclic aromatic hydrocarbons, salts, heavy metals, etc.. The main objective of this work was to study the solar distillation of produced water pre-treated to remove salts and other contaminants trough of a hybrid system with a pre-heater. This developed apparatus was called solar system, which consists of a solar heater and a conventional distillation solar still. The first device consisted of a water tank, a solar flat plate collector and a thermal reservoir. The solar distillator is of simple effect, with 1m2 of flat area and 20° of inclination. This dissertation was divided in five steps: measurements in the solar system, i.e. temperatures and distillate flow rate and weather data; modeling and simulation of the system; study of vapor-liquid equilibrium of the synthetic wastewater by the aqueous solution of p-xylene; physical and chemical analyses of samples of the feed, distillate and residue, as well as climatology pertinent variables of Natal-RN. The solar system was tested separately, with the supply water, aqueous NaCl and synthetic oil produced water. Temperature measurements were taken every minute of the thermal reservoir, water tank and distillator (liquid and vapor phases). Data of solar radiation and rainfall were obtained from INPE (National Institute for Space Research). The solar pre-heater demonstrated to be effective for the liquid systems tested. The reservoir fluid had an average temperature of 58°C, which enabled the feed to be pre-heated in the distillator. The temperature profile in the solar distillator showed a similar behavior to daily solar radiation, with temperatures near 70°C. The distillation had an average yield of 2.4 L /day, i.e., an efficiency of 27.2%. Mathematical modeling aided the identification of the most important variables and parameters in the solar system. The study of the vapor-liquid equilibrium from Total Organic Carbon (TOC) analysis indicated heteroazeotropia and the vapor phase resulted more concentrated in p-xylene. The physical-chemical analysis of pH, conductivity, Total Dissolved Solids (TDS), chlorides, cations (including heavy metals) and anions, the effluent distillate showed satisfactory results, which presents a potential for reuse. The climatological study indicates the region of Natal-RN as favorable to the operation of solar systems, but the use of auxiliary heating during periods of higher rainfall and cloud cover is also recommended
Resumo:
Textile industry deals with a high diversity of processes and generation of wastewaters with a high content of pollutant material. Before being disposed of in water bodies, a pre-treatment of the effluent is carried out, which is sometimes ineffective. In order to be properly treated, physical and chemical properties of the effluent must be known, as well as the pollutant agents that might be present in it. This has turned out to be a great problem in the textile industry, for there is a variety of processes and the pollutant load is very diversified. The characterization of the effluent allows the identification of most critical points and, as a consequence, the most appropriate treatment procedure to be employed, may be chosen. This study presents the results obtained after characterizing the effluent of a textile industry that comprises knitting, dyeing and apparel sections, processing mainly polyester/cotton articles. In this work, twenty samples of the effluent were collected, and related to the changes in production. From the results, a statistical evaluation was applied, determined in function of the rate of flow. The following properties and pollutants agents were quantitatively analysed: temperature; pH; sulfides; chlorine; alcalinity; chlorides; cianides; phenols; color; COD (Chemical Oxygen Demand); TOC (Total Organic Carbon); oil and grease; total, fixed and volatile solids; dissolved, fixed and volatile solids; suspended, fixed and volatile solids; setteable solids and heavy metals such as cadmium, copper, lead, chromium, tin, iron, zinc and nickel. Analyses were carried out according to ABNT NBR 13402 norm, based upon Standard Methods for the Examination of Water and Wastewater. As a consequence, a global treatment proposal is presented, involving clean production practices as contaminant load reducer, followed by conventional (biological) treatment
Resumo:
One of the main impacts to the environment is the water pollution, where the industrial sector is one of the main sources of this problem. In order to search for a solution, the industrial sector is looking forward to new technologies to treat its wastewaters with the goal to reuse the water in the own process. In this mode, the treatment presents a reduction in its costs with the water suply. One of these technologies that are getting more and more applications is the advanced oxidative processes (AOP´s). In this work two industrial wastewaters have been studied, i.e., containing polymers and pharmacus. In the case of the wastewaters with polymers the UV/H2O2 process has been applied with a systematic series of experiments, using irradiation from a mercury lamp and also solar. The following variables of the UV/H2O2 process for the polymers wastewaters have been studied systematically with the lamp reactor: mode of addition of hydrogen peroxide, temperature, time of reaction, hydrogen peroxide concentration and power of the lamp (80, 125, 250 and 400W). The results demonstrated to be satisfactory, obtaining rates of organic charge removal of 100% in 120 minutes of reaction. The studied variables for the experiments with solar irradiation using polymers wastewaters were only the time of reaction, the mode of addition and concentration of the hydrogen peroxide. The results with the solar irradiation demonstrated to be not satisfactory, reaching maximum of 22% of TOC removal in 240 minutes of reaction. This is in accordance with the fact that the solar source has only 5% of low UV irradiation. With respect to the photodegradation of the pharmacus wastewaters, the process UV/H2O2 and photo-Fenton have been applied. As a source of photons, in this case, a mercury UV lamp of 80 W has been used. The studied variables for the experiments with artificial irradiation with the pharmacus wastewaters were: initial concentration of the pollutant, concentration of Fe2+ and time of reaction. The results demonstrated a degree of degradation fairly satisfactory, showing a maximum conversion value of 46% in 120 minutes
Resumo:
The wet oxidation of organic compounds with CO2 and H2O has been demonstrated to be an efficient technique for effluent treatment. This work focuses on the synthesis, characterization and catalytic performance of Fe-MnO2/CeO2, K-MnO2/CeO2/ palygorskite and Fe/ palygorskite toward the wet oxidative degradation of phenol. The experiments were conducted in a sludge bed reactor with controlled temperature, pressure and stirring speed and sampling of the liquid phase. Experiments were performed on the following operating conditions: temperature 130 ° C, pressure 20.4 atm, catalyst mass concentration of 5 g / L initial concentration of phenol and 0.5 g / L. The catalytic tests were performed in a slurry agitated reactor provided with temperature, pressure and agitation control and reactor liquid sampling. The influences of iron loaded on the support (0.3; 7 and 10%, m/m) and the initial pH of the reactant medium (3.1; 6.8; 8.7) were studied. The iron dispersion on the palygorskite, the phase purity and the elemental composition of the catalyst were evaluated by X-Ray Difraction (XRD), Scanning Electron Microscopy (SEM) and X-Ray Flourescence (XRF). The use of palygorskite as support to increase the surface area was confirmed by the B.E.T. surface results. The phenol degradation curves showed that the Fe3+ over palygorskite when compared with the other materials tested has the best performance toward the (Total Organic carbonic) TOC conversion. The decrease in alkalinity of the reaction medium also favors the conversion of TOC. The maximum conversion obtained from the TOC with the catalyst 3% Fe / palygorskite was around 95% for a reaction time of 60 minutes, while reducing the formation of acids, especially acetic acid. With products obtained from wet oxidation of phenol, hydroquinone, p-benzoquinone, catechol and oxalic acid, identified and quantified by High Performance Liquid Chromatography was possible to propose a reaction mechanism of the process where the phenol is transformed into the homogeneous and heterogeneous phase in the other by applying a kinetic model, Langmuir-Hinshelwood type, with evaluation of kinetic constants of different reactions involved.
Resumo:
Increasing concern with the environment, in addition to strict laws, has induced the industries to find altenatives to the treatment of their wastes. Actually, the oil industry has sought solutions to overcome a big environmental problem, i.e., oil field produced water being discharged to the sea. These effluents have organic compounds dissolved, such as polycyclic aromatic hydrocarbons, phenols, benzene, toluene, ethylbenzene and xylenes (BTEX). These compounds are difficult to be removed and have high toxicity. The advanced oxidation processes - AOP are effective to degradation of these organic compounds, because they generate hydroxyl radicals with high potential of oxidation. This work includes the reactor photochemical development applied in the photodegradation treatment (by photo-Fenton process) of wastewaters containing organic compounds dissolved, aiming at treatment and recovery the oil field produced water. The studied reactor allowed the evaluation of two ultraviolet radiation sources that is the main factor to describe the feasibility of the photo¬Fenton treatment, i.e., sun and black light fluorescent lamps, and other relevant variables the process: concentration of reagents, irradiated area and also various reactor configurations to maximize the use of radiation. The organic matter degradation was verified with samples collected during the experimental and analyzed with a total organic carbon analyzer (TOC), which expressed the results in terms of mgC/L. The solar radiation was more effective than radiation from the lamps. it's an important factor for the operation costs cutting. Preliminary experiments applied to oil field produced water treatment have showed satisfactory results, reducing up to 76 % of organic matter
Resumo:
Increasing concern with the environment, in addition to strict laws, has induced the industries to find alternatives to the treatment of their wastes. Actually, the oil industry has sought solutions to overcome a big environmental problem, i.e., oil field produced water being discharged to the sea. These effluents have organic compounds dissolved, such as polycyclic aromatic hydrocarbons, phenols, benzene, toluene, ethylbenzene and xylenes (BTEX). These compounds are difficult to be removed and have high toxicity. The advanced oxidation processes - AOP are effective to degradation of these organic compounds, because they generate hydroxyl radicals with high potential of oxidation. This work includes the reactor photochemical development applied in the photodegradation treatment (by photo-Fenton process) of wastewaters containing organic compounds dissolved, aiming at treatment and recovery the oil field produced water. The studied reactor allowed the evaluation of two ultraviolet radiation sources that is the main factor to describe the feasibility of the photo- Fenton treatment, i.e., sun and black light fluorescent lamps, and other relevant variables the process: concentration of reagents, irradiated area and also various reactor configurations to maximize the use of radiation. The organic matter degradation was verified with samples collected during the experimental and analyzed with a total organic carbon analyzer (TOC), which expressed the results in terms of mgC/L. The solar radiation was more effective than radiation from the lamps. It's an important factor for the operation costs cutting. Preliminary experiments applied to oil field produced water treatment have showed satisfactory results, reducing up to 76 % of organic matter
Resumo:
Among the waste generated in the petrochemical industry water associated with oil production is the most important. It is considered one of the great challenges due to the presence of considered toxic chemicals present in this composition. The presence of these substances difficult to reuse the water associated with the enhanced recovery processes, so that prior to their reuse or disposal, treatment is necessary. This paper aimed to study the removal efficiency of chemical species: Ba2+, Ni2+, Cd2+, Cu2+, Cr3+, Sr2+ and Zn2+, present in the composition of the water associated with oil production by electrocoagulation. The evaluation of removal of these chemical species was performed by laboratory tests using electrochemical batch reactors and continuous flow. Initial tests were performed with electrocoagulation of synthetic wastewater in batch reactor using iron electrode. Results of removal of Zn2+ and Ni2+ were 78 % and 59 % respectively. While the percentage of removed Ba2+ was 19 % by 30 minutes of treatment and by applying current of 1.10 A. The tests were performed on effluent batch reactor applying the electrochemical technique with stainless steel electrodes 304, the objective was to remove part of the dispersed oil and also of organic compounds in the effluent. Under the experimental conditions used, the maximum result was obtained TOG was 60 % and TOC was approximately 50 % compared to the initial concentration. In the experiments carried out in continuous reactor, with effluent semisynthetic, have been used electrodes of iron and aluminum and the results were 100 % removal of Cd2+, Cu2+, Cr3+ and Zn2+ and 77 % of Sr2+. These percentages were only attainable through the use of the iron electrode. However, when the electrode was replaced by aluminum, there was a reduction in the percentage of removal to 65 %, using the same flow rate and current. Therefore according to the results obtained using the iron electrode was more effective in removing these metals and the conditions of lower current and lower flow rate was satisfactory, as observed in the experimental design adopted
Resumo:
Waste stabilization ponds (WSP) have been widely used for sewage treatment in hot climate regions because they are economic and environmentally sustainable. In the present study a WSP complex comprising a primary facultative pond (PFP) followed by two maturation ponds (MP-1 and MP-2) was studied, in the city of Natal-RN. The main objective was to study the bio-degradability of organic matter through the determination of the kinetic constant k throughout the system. The work was carried out in two phases. In the first, the variability in BOD, COD and TOC concentrations and an analysis of the relations between these parameters, in the influent raw sewage, pond effluents and in specific areas inside the ponds was studied. In the second stage, the decay rate for organic matter (k) was determined throughout the system based on BOD tests on the influent sewage, pond effluents and water column samples taken from fixed locations within the ponds, using the mathematical methods of Least Squares and the Thomas equation. Subsequently k was estimated as a function of a hydrodynamic model determined from the dispersion number (d), using empirical methods and a Partial Hydrodynamic Evaluation (PHE), obtained from tracer studies in a section of the primary facultative pond corresponding to 10% of its total length. The concentrations of biodegradable organic matter, measured as BOD and COD, gradually reduced through the series of ponds, giving overall removal efficiencies of 71.95% for BOD and of 52.45% for COD. Determining the values for k, in the influent and effluent samples of the ponds using the mathematical method of Least Squares, gave the following values respectively: primary facultative pond (0,23 day-1 and 0,09 day-1), maturation 1 (0,04 day-1 and 0,03 day-1) and maturation 2 (0,03 day-1 and 0,08 day-1). When using the Thomas method, the values of k in the influents and effluents of the ponds were: primary facultative pond (0,17 day-1 and 0,07 day-1), maturation 1 (0,02 day-1 and 0,01 day-1) and maturation 2 (0,01 day-1 and 0,02 day-1). From the Partial Hydrodynamic Evaluation, in the first section of the facultative pond corresponding to 10% of its total length, it can be concluded from the dispersion number obtained of d = 0.04, that the hydraulic regime is one of dispersed flow with a kinetic constant value of 0.20 day-1
Resumo:
Gossypium mustelinum Miers ex Watt is the only cotton species native from Brazil. It is endemic of the semi-arid region from North-east of the country, where it occur near from resilient water sources. The threats to the in situ conservation of the populations are caused by human interference in its habitat, mainly by excessive cattle graze and deforestation. Establish efficient strategies of in situ conservation depend on the accomplishment of a diagnosis of how the specie is found in its natural environment, and the knowledge about the genetic structure of the populations. The objectives of this work were i) to determine the in situ conditions of two populations present in rivers from basin of Rio Paraguaçu at the Bahia State, ii) to evaluate the structure and genetic variability presented in both populations, iii) to establish in situ and ex situ conservation strategies. It were realized collection in november 2007, when was realized in situ characterization of G. mustelinum. SSR markers were used for analyze 218 genotypes deriving from two populations of the G. mustelinum, localized at Tocó river and the Capivara river. The allelic frequencies, the heterozigosity and the F statics were estimated. All the plants were classified as wild and natives, and there was no evidence of the use the plants or its parts. The populations showed different conservation conditions in situ. Few plantlets were found in sites with excessive cattle feed, an indication that the damages in young plants should be high enough to compromise the renovation of the populations. On the other hand, populations were well preserved when the anthropic damages was low or inexistent. The 14 SSR primer pairs amplified 17 loci with a medium number of 5 alleles per locus (a total of 85 alleles). The high level of endogamy estimated (FIS=0,808) and the low observed heterozygosity (H0=0,093) were indicatives that the populations reproduce mainly by selfing, geitonogamy and crosses between related individuals. The genetic diversity was high (HE=0,482) and the differentiation between the populations was very high (FST=0,328). At least two sites from both populations of G. mustelinum must be preserved to achieve suitable in situ conservation. Actions that preserve the gallery forest and keep the cattle away should implemented, and could be as simple as erecting a fence. It is not possible anticipated if the in situ preservation will be possible. Therefore collections and ex situ preservation of representative specimens are essential to conserve the genetic diversity of native G. mustelinum