9 resultados para Interactive interfaces
em Reposit
Resumo:
Os modelos e as técnicas de modelação são, hoje em dia, fundamentais na engenharia de software, devido à complexidade e sofisticação dos sistemas de informação actuais.A linguagem Unified Modeling Language (UML) [OMG, 2005a] [OMG, 2005b] tornou-se uma norma para modelação, na engenharia de software e em outras áreas e domínios, mas é reconhecida a sua falta de suporte para a modelação da interactividade e da interface com o utilizador [Nunes and Falcão e Cunha, 2000].Neste trabalho, é explorada a ligação entre as áreas de engenharia de software e de interacção humano-computador, tendo, para isso, sido escolhido o processo de desenvolvimento Wisdom [Nunes and Falcão e Cunha, 2000] [Nunes, 2001]. O método Wisdom é conduzido por casos de utilização essenciais e pelo princípio da prototipificação evolutiva, focando-se no desenho das interfaces com o utilizador através da estrutura da apresentação, com a notação Protótipos Abstractos Canónicos (PAC) [Constantine and Lockwood, 1999] [Constantine, 2003], e do comportamento da interacção com a notação ConcurTaskTrees (CTT) [Paternò, 1999] [Mori, Paternò, et al., 2004] em UML.É proposto, também, neste trabalho um novo passo no processo Wisdom, sendo definido um modelo específico, construído segundo os requisitos da recomendação Model Driven Architecture (MDA) [Soley and OMG, 2000] [OMG, 2003] elaborada pela organização Object Managent Group (OMG). Este modelo específico será o intermediário entre o modelo de desenho e a implementação da interface final com o utilizador. Esta proposta alinha o método Wisdom com a recomendação MDA, tornando possível que sejam gerados, de forma automática, protótipos funcionais de interfaces com o utilizador a partir dos modelos conceptuais de análise e desenho.Foi utilizada a ferramenta de modelação e de metamodelação MetaSketch [Nóbrega, Nunes, et al., 2006] para a definição e manipulação dos modelos e elementos propostos. Foram criadas as aplicações Model2Model e Model2Code para suportar as transformações entre modelos e a geração de código a partir destes. Para a plataforma de implementação foi escolhida a framework Hydra, desenvolvida na linguagem PHP [PHP, 2006], que foi adaptada com alguns conceitos de modo a suportar a abordagem defendida neste trabalho.
Resumo:
Every time more we hear in our everyday statements like "I'm stressed!", "Don´t worry me more than I am." But in what sense can we use technology to combat these congestions that we deal with daily? Well, one way would be to use technology to create objects, systems or applications that can spoil us and preferably be imperceptible by the user and, for this we have the ubiquitous computing and nurturant technologies. The ubiquitous computing is increasingly discussed as well as ways to make your computer more subtle in the view of the user, which is subject of research and development. The use of technology as a source of relaxation and spoil us is a strand that is being explored in the context of nurturant technologies. Accordingly, this thesis is focused on the development of an object and several applications with which we can interact. The object and applications have the purpose to spoil us and help us relax after a long day at work or in some situation more stressful. The object developed employs technologies like the use of accelerometers and the applications developed employs communications between computers and Web cameras. This thesis begins with a brief introduction to the areas of research and others that we can include in this thesis, such as ubiquitous computing and the nurturant technologies, providing yet general information on stress and ways to mitigate it. Later is described some of the work already done and that influenced this thesis as well as the prototypes developed and the experiences performed, ending with a general conclusion and future work.
Resumo:
Nowadays computers have advanced beyond the desktop into many parts of everyday life and objects. To achieve this we have to make the computer invisible, and making a computer invisible is not a matter of size of the hardware, it’s all about how the human perceives the computer. To make this possible, the interaction with the computer has to be done in an alternative way, such that the user doesn’t notice the usual computer interfaces (mouse and keyboard) when using it. Therefore this thesis focuses on physical objects that are interactive to achieve various purposes like persuasive objects for stress relief, persuasive objects to help the process of teaching, persuasive objects for fun, persuasive objects to display internet information and persuasive objects to make people feel more in community (exchange virtual emotions), persuasive objects are going to be created and evaluated to see if they have the power to simplify and turn our lives better. The persuasive objects developed employ technology like sensors, actuators, microcontrollers, and computer/web services’ communication. This Master thesis starts by presenting a comprehensive introduction of what are persuasive objects and some general information about several areas that are related to our persuasive objects like stress relief, work experience, multimedia education and other major aspects. It continues by describing related work done in this area. Then we have a detailed view of each persuasive object and finally this thesis finishes with a general conclusion and notion of future work.
Resumo:
Orientador: Alberto Manuel Rodrigues da Silva
Resumo:
This thesis describes all process of the development of music visualization, starting with the implementation, followed by realization and then evaluation. The main goal is to have to knowledge of how the audience live performance experience can be enhanced through music visualization. With music visualization is possible to give a better understanding about the music feelings constructing an intensive atmosphere in the live music performance, which enhances the connection between the live music and the audience through visuals. These visuals have to be related to the live music, furthermore has to quickly respond to live music changes and introduce novelty into the visuals. The mapping between music and visuals is the focus of this project, in order to improve the relationship between the live performance and the spectators. The implementation of music visualization is based on the translation of music into graphic visualizations, therefore at the beginning the project was based on the existent works. Later on, it was decided to introduce new ways of conveying music into visuals. Several attempts were made in order to discover the most efficient mapping between music and visualization so people can fully connect with the performance. Throughout this project, those attempts resulted in several music visualizations created for four live music performances, afterwards it was produced an online survey to evaluate those live performances with music visualization. In the end, all conclusions are presented based on the results of the online survey, and also is explained which music elements should be depicted in the visuals, plus how those visuals should respond to the selected music elements.
Resumo:
A constraint satisfaction problem is a classical artificial intelligence paradigm characterized by a set of variables (each variable with an associated domain of possible values), and a set of constraints that specify relations among subsets of these variables. Solutions are assignments of values to all variables that satisfy all the constraints. Many real world problems may be modelled by means of constraints. The range of problems that can use this representation is very diverse and embraces areas like resource allocation, scheduling, timetabling or vehicle routing. Constraint programming is a form of declarative programming in the sense that instead of specifying a sequence of steps to execute, it relies on properties of the solutions to be found, which are explicitly defined by constraints. The idea of constraint programming is to solve problems by stating constraints which must be satisfied by the solutions. Constraint programming is based on specialized constraint solvers that take advantage of constraints to search for solutions. The success and popularity of complex problem solving tools can be greatly enhanced by the availability of friendly user interfaces. User interfaces cover two fundamental areas: receiving information from the user and communicating it to the system; and getting information from the system and deliver it to the user. Despite its potential impact, adequate user interfaces are uncommon in constraint programming in general. The main goal of this project is to develop a graphical user interface that allows to, intuitively, represent constraint satisfaction problems. The idea is to visually represent the variables of the problem, their domains and the problem constraints and enable the user to interact with an adequate constraint solver to process the constraints and compute the solutions. Moreover, the graphical interface should be capable of configure the solver’s parameters and present solutions in an appealing interactive way. As a proof of concept, the developed application – GraphicalConstraints – focus on continuous constraint programming, which deals with real valued variables and numerical constraints (equations and inequalities). RealPaver, a state-of-the-art solver in continuous domains, was used in the application. The graphical interface supports all stages of constraint processing, from the design of the constraint network to the presentation of the end feasible space solutions as 2D or 3D boxes.
Resumo:
With the current proliferation of sensor equipped mobile devices such as smartphones and tablets, location aware services are expanding beyond the mere efficiency and work related needs of users, evolving in order to incorporate fun, culture and the social life of users. Today people on the move have more and more connectivity and are expected to be able to communicate with their usual and familiar social networks. That means communications not only with their peers and colleagues, friends and family but also with unknown people that might share their interests, curiosities or happen to use the same social network. Through social networks, location aware blogging, cultural mobile applications relevant information is now available at specific geographical locations and open to feedback and conversations among friends as well as strangers. In fact, nowadays smartphone technologies aloud users to post and retrieve content while on the move, often relating to specific physical landmarks or locations, engaging and being engaged in conversations with strangers as much as their own social network. The use of such technologies and applications while on the move can often lead people to serendipitous discoveries and interactions. Throughout our thesis we are engaging on a two folded investigation: how can we foster and support serendipitous discoveries and what are the best interfaces for it? In fact, to read and write content while on the move is a cognitively intensive task. While the map serves the function of orienting the user, it also absorbs most of the user’s concentration. In order to address this kind of cognitive overload issue with Breadcrumbs we propose a 360 degrees interface that enables the user to find content around them by means of scanning the surrounding space with the mobile device. By using a loose metaphor of a periscope, harnessing the power of the smartphone sensors we designed an interactive interface capable of detecting content around the users and display it in the form of 2 dimensional bubbles which diameter depends on their distance from the users. Users will navigate the space in relation to the content that they are curious about, rather than in relation to the traditional geographical map. Through this model we envisage alleviating a certain cognitive overload generated by having to continuously confront a two dimensional map with the real three dimensional space surrounding the user, but also use the content as a navigational filter. Furthermore this alternative mean of navigating space might bring serendipitous discovery about places that user where not aware of or intending to reach. We hence conclude our thesis with the evaluation of the Breadcrumbs application and the comparison of the 360 degrees interface with a traditional 2 dimensional map displayed on the devise screen. Results from the evaluation are compiled in findings and insights for future use in designing and developing context aware mobile applications.
Resumo:
The ability to view and interact with 3D models has been happening for a long time. However, vision-based 3D modeling has only seen limited success in applications, as it faces many technical challenges. Hand-held mobile devices have changed the way we interact with virtual reality environments. Their high mobility and technical features, such as inertial sensors, cameras and fast processors, are especially attractive for advancing the state of the art in virtual reality systems. Also, their ubiquity and fast Internet connection open a path to distributed and collaborative development. However, such path has not been fully explored in many domains. VR systems for real world engineering contexts are still difficult to use, especially when geographically dispersed engineering teams need to collaboratively visualize and review 3D CAD models. Another challenge is the ability to rendering these environments at the required interactive rates and with high fidelity. In this document it is presented a virtual reality system mobile for visualization, navigation and reviewing large scale 3D CAD models, held under the CEDAR (Collaborative Engineering Design and Review) project. It’s focused on interaction using different navigation modes. The system uses the mobile device's inertial sensors and camera to allow users to navigate through large scale models. IT professionals, architects, civil engineers and oil industry experts were involved in a qualitative assessment of the CEDAR system, in the form of direct user interaction with the prototypes and audio-recorded interviews about the prototypes. The lessons learned are valuable and are presented on this document. Subsequently it was prepared a quantitative study on the different navigation modes to analyze the best mode to use it in a given situation.
Resumo:
The goal of this work was to provide professional and amateur writers with a new way of enhancing their productivity and mental well-being, by helping them overcoming writers block and being able to achieve a state of optimal experience while writing. Our approach is based on bringing together different components to create what we call a creative moment. A creative moment is composed by an image, a text, a mood, a location and a color. The color presented in the creative moment varied according to the mood that was associated to the creative moment. With the creative moments we hoped that our users could have a way to easily trigger their creativity and have a kick start in their work. The prototyping of a web crowdsourcing platform, named CreativeWall, and a Microsoft Word Add-In, that was used on the user study performed, is described and their implementations are discussed. The user study reveals that our approach does have a positive influence in the productivity of the participants when compared with another existing approach. The study also revealed that our approach can ease the process of achieving a state of optimal experience by enhancing one of the dimensions presented on the Flow Theory. At the end we present what we consider would be some possible future developments for the concept created during the development of this work.