2 resultados para ~1H
em Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal
Resumo:
This dissertation presents and discusses the preparation of molecular wires (MW) candidates that would then be probed for electron transfer properties. These wires are bridged by 1,4-diethynylbenzene derivatives with alkoxy side chains with palladium and ruthenium metal complex termini. Characterization of these compounds was performed by usual spectroscopic techniques like 1H, 13C{1H} and 31P{1H} NMR, MS, FTIR and UV-Vis as well as by cyclic voltammetry which allowed classifying the candidates in the Robin–Day system and determination of bridges side chain and length effects on electronic transport. Preparation of the 1,4-diethynylbenzene derivatives was done with synthetic pathways that relied heavily in palladium catalyzed cross-couplings (Sonogashira). A family of single ringed 1,4-diethynylbenzene ligands with different length alkoxy side chains (OCH3, OC2H5, OC7H15) was thus prepared allowing for the influence of these ring decorations to be assessed. The ruthenium binuclear rods showed communication between metal centres only when the shorter ligands were used whereas the longer Ru complexes showed only one redox pair in CV studies which is in agreement to non-communicating metal centres. Cyclic voltammetry studies show irreversible one wave processes for palladium dinuclear complexes, making these rods function as molecular insulators. Fluorescence decay studies performed on the prepared compounds (ligands and complexes) show a pattern of decreasing decay times upon coordination to the metal centres which can due to ligand charge redistribution upon coordination leading to non-radiative relaxation paths. Regarding the X-ray structures, two new ligand related structures were obtained as well as new structure for a palladium rod. The effect of the side chains was observed to be important to the wires’ electronic properties when comparing with the analogues without a side chain. The effect brought by longer chains is nevertheless almost negligible.
Resumo:
Asthma is a significant health issue in the pediatric population with a noteworthy growth over the years. The proposed challenge for this PhD thesis was the development of advanced methodologies to establish metabolomic patterns in urine and exhaled breath associated with asthma whose applicability was subsequently exploited to evaluate the disease state, the therapy adhesion and effect and for diagnostic purposes. The volatile composition of exhaled breath was studied combining headspace solid phase microextraction (HS-SPME) with gas chromatography coupled to mass spectrometry or with comprehensive two-dimensional gas chromatography coupled to mass spectrometry with a high resolution time of flight analyzer (GC×GC–ToFMS). These methodologies allowed the identification of several hundred compounds from different chemical families. Multivariate analysis (MVA) led to the conclusion that the metabolomic profile of asthma individuals is characterized by higher levels of compounds associated with lipid peroxidation, possibly linked to oxidative stress and inflammation (alkanes and aldehydes) known to play an important role in asthma. For future applications in clinical settings a set of nine compounds was defined and the clinical applicability was proven in monitoring the disease status and in the evaluation of the effect and / or adherence to therapy. The global volatile metabolome of urine was also explored using an HSSPME/GC×GC–ToFMS method and c.a. 200 compounds were identified. A targeted analysis was performed, with 78 compounds related with lipid peroxidation and consequently to oxidative stress levels and inflammation. The urinary non-volatile metabolomic pattern of asthma was established using proton nuclear magnetic resonance (1H NMR). This analysis allowed identifying central metabolic pathways such as oxidative stress, amino acid and lipid metabolism, gut microflora alterations, alterations in the tricarboxylic acid (TCA) cycle, histidine metabolism, lactic acidosis, and modification of free tyrosine residues after eosinophil stimulation. The obtained results allowed exploring and demonstrating the potential of analyzing the metabolomic profile of exhaled air and urine in asthma. Besides the successful development of analysis methodologies, it was possible to explore through exhaled air and urine biochemical pathways affected by asthma, observing complementarity between matrices, as well as, verify the clinical applicability.