2 resultados para untargeted metabolomics
em Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal
Resumo:
Asthma is a significant health issue in the pediatric population with a noteworthy growth over the years. The proposed challenge for this PhD thesis was the development of advanced methodologies to establish metabolomic patterns in urine and exhaled breath associated with asthma whose applicability was subsequently exploited to evaluate the disease state, the therapy adhesion and effect and for diagnostic purposes. The volatile composition of exhaled breath was studied combining headspace solid phase microextraction (HS-SPME) with gas chromatography coupled to mass spectrometry or with comprehensive two-dimensional gas chromatography coupled to mass spectrometry with a high resolution time of flight analyzer (GC×GC–ToFMS). These methodologies allowed the identification of several hundred compounds from different chemical families. Multivariate analysis (MVA) led to the conclusion that the metabolomic profile of asthma individuals is characterized by higher levels of compounds associated with lipid peroxidation, possibly linked to oxidative stress and inflammation (alkanes and aldehydes) known to play an important role in asthma. For future applications in clinical settings a set of nine compounds was defined and the clinical applicability was proven in monitoring the disease status and in the evaluation of the effect and / or adherence to therapy. The global volatile metabolome of urine was also explored using an HSSPME/GC×GC–ToFMS method and c.a. 200 compounds were identified. A targeted analysis was performed, with 78 compounds related with lipid peroxidation and consequently to oxidative stress levels and inflammation. The urinary non-volatile metabolomic pattern of asthma was established using proton nuclear magnetic resonance (1H NMR). This analysis allowed identifying central metabolic pathways such as oxidative stress, amino acid and lipid metabolism, gut microflora alterations, alterations in the tricarboxylic acid (TCA) cycle, histidine metabolism, lactic acidosis, and modification of free tyrosine residues after eosinophil stimulation. The obtained results allowed exploring and demonstrating the potential of analyzing the metabolomic profile of exhaled air and urine in asthma. Besides the successful development of analysis methodologies, it was possible to explore through exhaled air and urine biochemical pathways affected by asthma, observing complementarity between matrices, as well as, verify the clinical applicability.
Resumo:
BACKGROUND: Non-invasive diagnostic strategies aimed at identifying biomarkers of cancer are of great interest for early cancer detection. Urine is potentially a rich source of volatile organic metabolites (VOMs) that can be used as potential cancer biomarkers. Our aim was to develop a generally reliable, rapid, sensitive, and robust analytical method for screening large numbers of urine samples, resulting in a broad spectrum of native VOMs, as a tool to evaluate the potential of these metabolites in the early diagnosis of cancer. METHODS: To investigate urinary volatile metabolites as potential cancer biomarkers, urine samples from 33 cancer patients (oncological group: 14 leukaemia, 12 colorectal and 7 lymphoma) and 21 healthy (control group, cancer-free) individuals were qualitatively and quantitatively analysed. Dynamic solid-phase microextraction in headspace mode (dHS-SPME) using a carboxenpolydimethylsiloxane (CAR/PDMS) sorbent in combination with GC-qMS-based metabolomics was applied to isolate and identify the volatile metabolites. This method provides a potential non-invasive method for early cancer diagnosis as a first approach. To fulfil this objective, three important dHS-SPME experimental parameters that influence extraction efficiency (fibre coating, extraction time and temperature of sampling) were optimised using a univariate optimisation design. The highest extraction efficiency was obtained when sampling was performed at 501C for 60min using samples with high ionic strengths (17% sodium chloride, wv 1) and under agitation. RESULTS: A total of 82 volatile metabolites belonging to distinct chemical classes were identified in the control and oncological groups. Benzene derivatives, terpenoids and phenols were the most common classes for the oncological group, whereas ketones and sulphur compounds were the main classes that were isolated from the urine headspace of healthy subjects. The results demonstrate that compound concentrations were dramatically different between cancer patients and healthy volunteers. The positive rates of 16 patients among the 82 identified were found to be statistically different (Po0.05). A significant increase in the peak area of 2-methyl3-phenyl-2-propenal, p-cymene, anisole, 4-methyl-phenol and 1,2-dihydro-1,1,6-trimethyl-naphthalene in cancer patients was observed. On average, statistically significant lower abundances of dimethyl disulphide were found in cancer patients. CONCLUSIONS: Gas chromatographic peak areas were submitted to multivariate analysis (principal component analysis and supervised linear discriminant analysis) to visualise clusters within cases and to detect the volatile metabolites that are able to differentiate cancer patients from healthy individuals. Very good discrimination within cancer groups and between cancer and control groups was achieved.