4 resultados para tree height growth
em Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal
Resumo:
Within a country social conditions change over time and these conditions vary from country to country. The associations between these conditions, somatic growth, physical activity and fitness reflect these changes. Aim: The study documented variation in somatic growth, physical activity and fitness associated with socio-economic status (SES). Subjects and methods: The study involved 507 subjects (256 boys and 251 girls) from the Madeira Growth Study, a mixed longitudinal study of five cohorts (8, 10, 12, 14 and 16 years of age) followed at yearly intervals over 3 years (1996–1998). A total of 1493 observations were made. Anthropometric measurements included lengths, body mass, skeletal breadths, girths and skinfolds. Physical activity and SES were collected via questionnaire and interview. Physical fitness was assessed using the Eurofit test battery. Variation in somatic growth, physical activity and physical fitness by SES (high, average and low) was tested with analysis of variance. Results: Significant differences between SES groups were observed for height, body mass and skinfolds. Boys and girls from high SES groups were taller, heavier and fatter (subscapular and triceps skinfolds) than their peers from average and low SES groups. At some age intervals, the high SES group had larger skeletal breadths (girls) and girths (boys and girls) than low SES. Small SES differences were observed for physical activity (sport and leisure-time indices). SES was significantly associated with physical fitness. At some age levels, boys from the low SES group performed better for muscular and aerobic endurance whereas girls from the high SES group performed better for power. Conclusion: Considerable variation in somatic growth and physical fitness in association with SES has been demonstrated, but little association was found for physical activity.
Resumo:
Secular trends in height and weight are reasonably well documented in Europe. Corresponding observations for skeletal maturation are lacking. Aim: To assess secular trends in height, body mass and skeletal maturity of Portuguese children and adolescents and to provide updated reference values for skeletal maturity scores (SMSs). Subjects and methods: Data for 2856 children and adolescents of 4–17 years, 1412 boys and 1444 girls, from The ‘Madeira Growth Study’ (MGS; 1996–1998) and from the‘Healthy Growth of Madeira Children Study’ (CRES; 2006) were used. Height and body mass were measured. Skeletal maturity was assessed with the Tanner-Whitehouse 2 and 3 methods. Results: Children from CRES were taller and heavier than peers from MGS. Differences in height reached 5.8cm in boys and 5.5cm in girls. RUS SMSs did not differ consistently between surveys boys, while higher RUS scores were observed in CRES girls. Adult RUS SMSs for MGS and CRES combined were attained at 15.8 years in boys and 14.8 years in girls. Corresponding ages for adult Carpal SMSs were 14.4 and 14.0, respectively. Conclusion: The short-term trends for height and mass were not entirely consistent with the trends in RUS and Carpal SMSs and SAs.
Resumo:
The purpose of this study was to validate and cross-validate the Beunen-Malina-Freitas method for non-invasive prediction of adult height in girls. A sample of 420 girls aged 10–15 years from the Madeira Growth Study were measured at yearly intervals and then 8 years later. Anthropometric dimensions (lengths, breadths, circumferences, and skinfolds) were measured; skeletal age was assessed using the Tanner-Whitehouse 3 method and menarcheal status (present or absent) was recorded. Adult height was measured and predicted using stepwise, forward, and maximum R2 regression techniques. Multiple correlations, mean differences, standard errors of prediction, and error boundaries were calculated. A sample of the Leuven Longitudinal Twin Study was used to cross-validate the regressions. Age-specific coefficients of determination (R2) between predicted and measured adult height varied between 0.57 and 0.96, while standard errors of prediction varied between 1.1 and 3.9 cm. The cross-validation confirmed the validity of the Beunen-Malina-Freitas method in girls aged 12–15 years, but at lower ages the cross-validation was less consistent. We conclude that the Beunen-Malina-Freitas method is valid for the prediction of adult height in girls aged 12–15 years. It is applicable to European populations or populations of European ancestry.
Resumo:
This study aimed to provide height, body mass, BMI and waist circumference (WC) growth centile charts for school-children, aged 4–17 years, from central Peru, and to compare Peruvian data with North-American and Argentinean references. The sample consisted of 8753 children and adolescents (4130 boys and 4623 girls) aged 4 to 17 years, from four Peruvian cities: Barranco, La Merced, San Ramón and Junín. Height, body mass and WC were measured according to standardized techniques. Centile curves for height, body mass, BMI and WC were obtained separately for boys and girls using the LMS method. Student t-tests were used to compare mean values. Overall boys have higher median heights than girls, and the 50th percentile for body mass increases curvilinearly from 4 years of age onwards. In boys, the BMI and WC 50th percentiles increase linearly and in girls, the increase presents a curvilinear pattern. Peruvian children are shorter, lighter and have higher BMI than their counterparts in the U.S. and Argentina; in contrast, age and sex-specific WC values are lower. Height, body mass and WC of Peruvian children increased with age and variability was higher at older ages. The growth patterns for height, body mass, BMI and WC among Peruvian children were similar to those observed in North-American and Argentinean peers.