2 resultados para software management infrastructure

em Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Generalized hyper competitiveness in the world markets has determined the need to offer better products to potential and actual clients in order to mark an advantagefrom other competitors. To ensure the production of an adequate product, enterprises need to work on the efficiency and efficacy of their business processes (BPs) by means of the construction of Interactive Information Systems (IISs, including Interactive Multimedia Documents) so that they are processed more fluidly and correctly.The construction of the correct IIS is a major task that can only be successful if the needs from every intervenient are taken into account. Their requirements must bedefined with precision, extensively analyzed and consequently the system must be accurately designed in order to minimize implementation problems so that the IIS isproduced on schedule and with the fewer mistakes as possible. The main contribution of this thesis is the proposal of Goals, a software (engineering) construction process which aims at defining the tasks to be carried out in order to develop software. This process defines the stakeholders, the artifacts, and the techniques that should be applied to achieve correctness of the IIS. Complementarily, this process suggests two methodologies to be applied in the initial phases of the lifecycle of the Software Engineering process: Process Use Cases for the phase of requirements, and; MultiGoals for the phases of analysis and design. Process Use Cases is a UML-based (Unified Modeling Language), goal-driven and use case oriented methodology for the definition of functional requirements. It uses an information oriented strategy in order to identify BPs while constructing the enterprise’s information structure, and finalizes with the identification of use cases within the design of these BPs. This approach provides a useful tool for both activities of Business Process Management and Software Engineering. MultiGoals is a UML-based, use case-driven and architectural centric methodology for the analysis and design of IISs with support for Multimedia. It proposes the analysis of user tasks as the basis of the design of the: (i) user interface; (ii) the system behaviour that is modeled by means of patterns which can combine Multimedia and standard information, and; (iii) the database and media contents. This thesis makes the theoretic presentation of these approaches accompanied with examples from a real project which provide the necessary support for the understanding of the used techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to identify whether activity modeling framework supports problem analysis and provides a traceable and tangible connection from the problem identification up to solution modeling. Methodology validation relied on a real problem from a Portuguese teaching syndicate (ASPE), regarding courses development and management. The study was carried out with a perspective to elaborate a complete tutorial of how to apply activity modeling framework to a real world problem. Within each step of activity modeling, we provided a summary elucidation of the relevant elements required to perform it, pointed out some improvements and applied it to ASPE’s real problem. It was found that activity modeling potentiates well structured problem analysis as well as provides a guiding thread between problem and solution modeling. It was concluded that activity-based task modeling is key to shorten the gap between problem and solution. The results revealed that the solution obtained using activity modeling framework solved the core concerns of our customer and allowed them to enhance the quality of their courses development and management. The principal conclusion was that activity modeling is a properly defined methodology that supports software engineers in problem analysis, keeping a traceable guide among problem and solution.