4 resultados para performance-based engineering
em Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal
Resumo:
Online geographic-databases have been growing increasingly as they have become a crucial source of information for both social networks and safety-critical systems. Since the quality of such applications is largely related to the richness and completeness of their data, it becomes imperative to develop adaptable and persistent storage systems, able to make use of several sources of information as well as enabling the fastest possible response from them. This work will create a shared and extensible geographic model, able to retrieve and store information from the major spatial sources available. A geographic-based system also has very high requirements in terms of scalability, computational power and domain complexity, causing several difficulties for a traditional relational database as the number of results increases. NoSQL systems provide valuable advantages for this scenario, in particular graph databases which are capable of modeling vast amounts of inter-connected data while providing a very substantial increase of performance for several spatial requests, such as finding shortestpath routes and performing relationship lookups with high concurrency. In this work, we will analyze the current state of geographic information systems and develop a unified geographic model, named GeoPlace Explorer (GE). GE is able to import and store spatial data from several online sources at a symbolic level in both a relational and a graph databases, where several stress tests were performed in order to find the advantages and disadvantages of each database paradigm.
Resumo:
An ultra-fast and improved analytical methodology based on microextraction by packed sorbent (MEPS) combined with ultra-performance LC (UPLC) was developed and validated for determination of (E)-resveratrol in wines. Important factors affecting the performance of MEPS such as the type of sorbent material (C2, C8, C18, SIL, and M1), number of extraction cycles, and sample volume were studied. The optimal conditions of MEPS extraction were obtained using C8 sorbent and small sample volumes (50–250mL) in one extraction cycle (extract–discard) and in a short time period (about 3 min for the entire sample preparation step). (E)-Resveratrol was eluted by 1 250mL of the mixture containing 95% methanol and 5% water, and the separation was carried out on a highstrength silica HSS T3 analytical column (100 mm 2.1 mm, 1.8mm particle size) using a binary mobile phase composed of aqueous 0.1% formic acid (eluent A) and methanol (eluent B) in the gradient elution mode (10 min of total analysis). The method was fully validated in terms of linearity, detection (LOD) and quantification (LOQ) limits, extraction yield, accuracy, and inter/intra-day precision, using a Madeira wine sample (ET) spiked with (E)-resveratrol at concentration levels ranging from 5 to 60mg/mL. Validation experiments revealed very good recovery rate of 9575.8% RSD, good linearity with r2 values 40.999 within the established concentration range, excellent repeatability (0.52%), and reproducibility (1.67%) values (expressed as RSD), thus demonstrating the robustness and accuracy of the MEPSC8/UPLC-photodiode array (PDA) method. The LOD of the method was 0.21mg/mL, whereas the LOQ was 0.68mg/mL. The validated methodology was applied to 30 commercial wines (24 red wines and six white wines) from different grape varieties, vintages, and regions. On the basis of the analytical validation, the MEPSC8/UPLC-PDA methodology shows to be an improved, sensitive, and ultra-fast approach for determination of (E)-resveratrol in wines with high resolving power within 6 min.
Resumo:
The purpose of this study was to identify whether activity modeling framework supports problem analysis and provides a traceable and tangible connection from the problem identification up to solution modeling. Methodology validation relied on a real problem from a Portuguese teaching syndicate (ASPE), regarding courses development and management. The study was carried out with a perspective to elaborate a complete tutorial of how to apply activity modeling framework to a real world problem. Within each step of activity modeling, we provided a summary elucidation of the relevant elements required to perform it, pointed out some improvements and applied it to ASPE’s real problem. It was found that activity modeling potentiates well structured problem analysis as well as provides a guiding thread between problem and solution modeling. It was concluded that activity-based task modeling is key to shorten the gap between problem and solution. The results revealed that the solution obtained using activity modeling framework solved the core concerns of our customer and allowed them to enhance the quality of their courses development and management. The principal conclusion was that activity modeling is a properly defined methodology that supports software engineers in problem analysis, keeping a traceable guide among problem and solution.
Resumo:
The ability to view and interact with 3D models has been happening for a long time. However, vision-based 3D modeling has only seen limited success in applications, as it faces many technical challenges. Hand-held mobile devices have changed the way we interact with virtual reality environments. Their high mobility and technical features, such as inertial sensors, cameras and fast processors, are especially attractive for advancing the state of the art in virtual reality systems. Also, their ubiquity and fast Internet connection open a path to distributed and collaborative development. However, such path has not been fully explored in many domains. VR systems for real world engineering contexts are still difficult to use, especially when geographically dispersed engineering teams need to collaboratively visualize and review 3D CAD models. Another challenge is the ability to rendering these environments at the required interactive rates and with high fidelity. In this document it is presented a virtual reality system mobile for visualization, navigation and reviewing large scale 3D CAD models, held under the CEDAR (Collaborative Engineering Design and Review) project. It’s focused on interaction using different navigation modes. The system uses the mobile device's inertial sensors and camera to allow users to navigate through large scale models. IT professionals, architects, civil engineers and oil industry experts were involved in a qualitative assessment of the CEDAR system, in the form of direct user interaction with the prototypes and audio-recorded interviews about the prototypes. The lessons learned are valuable and are presented on this document. Subsequently it was prepared a quantitative study on the different navigation modes to analyze the best mode to use it in a given situation.