2 resultados para oil residue

em Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hop(HumuluslupulusL.,Cannabaceaefamily)isprizedforitsessentialoilcontents,usedin beer production and, more recently, in biological and pharmacological applications. In this work,a methodinvolvingheadspace solid-phase microextractionand gas chromatography– mass spectrometry was developed and optimized to establish the terpenoid (monoterpenes and sesquiterpenes) metabolomic pattern of hop-essential oil derived from Saaz variety as a mean to explore this matrix as a powerful biological source for newer, more selective, biodegradable and naturally produced antimicrobial and antioxidant compounds. Different parameters affecting terpenoid metabolites extraction by headspace solid-phase microextraction were considered and optimized: type of fiber coatings, extraction temperature, extraction time, ionic strength, and sample agitation. In the optimized method, analytes were extracted for 30 min at 40 C in the sample headspace with a 50/30 m divinylbenzene/carboxen/polydimethylsiloxane coating fiber. The methodology allowed the identification of a total of 27 terpenoid metabolites, representing 92.5% of the total Saaz hop-essential oil volatile terpenoid composition. The headspace composition was dominated by monoterpenes (56.1%, 13 compounds), sesquiterpenes (34.9%, 10), oxygenated monoterpenes (1.41%, 3), and hemiterpenes (0.04%, 1) some of which can probably contribute to the hop of Saaz variety aroma. Mass spectrometry analysis revealed that the main metabolites are the monoterpene -myrcene (53.0±1.1% of the total volatile fraction), and the cyclic sesquiterpenes, -humulene (16.6 ± 0.8%), and -caryophyllene (14.7 ± 0.4%), which together represent about 80% of the total volatile fraction from the hop-essential oil. Thesefindingssuggestthatthismatrixcanbeexploredasapowerfulbiosourceofterpenoid metabolites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Agricultural and agro-industrial residues are often considered both an environmental and an economical problem. Therefore, a paradigm shift is needed, assuming residues as biorefinery feedstocks. In this work cherimoya (Annona cherimola Mill.) seeds, which are lipid-rich (ca. 30%) and have a significant lignocellulosic fraction, were used as an example of a residue without any current valorization. Firstly, the lipid fraction was obtained by solvent extraction. Extraction yield varied from 13% to 28%, according to the extraction method and time, and solvent purity. This oil was converted into biodiesel (by base-catalyzed transesterification), yielding 76 g FAME/100 g oil. The obtained biodiesel is likely to be incorporated in the commercial chain, according to the EN14214 standard. The remaining lignocellulosic fraction was subjected to two alternative fractionation processes for the selective recovery of hemicellulose, aiming different products. Empirical mathematical models were developed for both processes, aiming future scale-up. Autohydrolysis rendered essentially oligosaccharides (10 gL-1) with properties indicating potential food/feed/pharmacological applications. The remaining solid was enzymatically saccharified, reaching a saccharification yield of 83%. The hydrolyzate obtained by dilute acid hydrolysis contained mostly monosaccharides, mainly xylose (26 gL-1), glucose (10 gL-1) and arabinose (3 gL-1), and had low content of microbial growth inhibitors. This hydrolyzate has proven to be appropriate to be used as culture media for exopolisaccharide production, using bacteria or microbial consortia. The maximum conversion of monosaccharides into xanthan gum was 0.87 g/g and kefiran maximum productivity was 0.07 g.(Lh)-1. This work shows the technical feasibility of using cherimoya seeds, and materials as such, as potential feedstocks, opening new perspectives for upgrading them in the biorefinery framework.