2 resultados para oasis

em Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new approach based on microextraction by packed sorbent (MEPS) and reversed-phase high-throughput ultra high pressure liquid chromatography (UHPLC) method that uses a gradient elution and diode array detection to quantitate three biologically active flavonols in wines, myricetin, quercetin, and kaempferol, is described. In addition to performing routine experiments to establish the validity of the assay to internationally accepted criteria (selectivity, linearity, sensitivity, precision, accuracy), experiments are included to assess the effect of the important experimental parameters such as the type of sorbent material (C2, C8, C18, SIL, and C8/SCX), number of extraction cycles (extract-discard), elution volume, sample volume, and ethanol content, on the MEPS performance. The optimal conditions of MEPS extraction were obtained using C8 sorbent and small sample volumes (250 μL) in five extraction cycle and in a short time period (about 5 min for the entire sample preparation step). Under optimized conditions, excellent linearity View the MathML source(Rvalues2>0.9963), limits of detection of 0.006 μg mL−1 (quercetin) to 0.013 μg mL−1 (myricetin) and precision within 0.5–3.1% were observed for the target flavonols. The average recoveries of myricetin, quercetin and kaempferol for real samples were 83.0–97.7% with relative standard deviation (RSD, %) lower than 1.6%. The results obtained showed that the most abundant flavonol in the analyzed samples was myricetin (5.8 ± 3.7 μg mL−1). Quercetin (0.97 ± 0.41 μg mL−1) and kaempferol (0.66 ± 0.24 μg mL−1) were found in a lower concentration. The optimized MEPSC8 method was compared with a reverse-phase solid-phase extraction (SPE) procedure using as sorbent a macroporous copolymer made from a balanced ratio of two monomers, the lipophilic divinylbenzene and the hydrophilic N-vinylpyrrolidone (Oasis HLB) were used as reference. MEPSC8 approach offers an attractive alternative for analysis of flavonols in wines, providing a number of advantages including highest extraction efficiency (from 85.9 ± 0.9% to 92.1 ± 0.5%) in the shortest extraction time with low solvent consumption, fast sample throughput, more environmentally friendly and easy to perform.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This manuscript describes the development and validation of an ultra-fast, efficient, and high throughput analytical method based on ultra-high performance liquid chromatography (UHPLC) equipped with a photodiode array (PDA) detection system, for the simultaneous analysis of fifteen bioactive metabolites: gallic acid, protocatechuic acid, (−)-catechin, gentisic acid, (−)-epicatechin, syringic acid, p-coumaric acid, ferulic acid, m-coumaric acid, rutin, trans-resveratrol, myricetin, quercetin, cinnamic acid and kaempferol, in wines. A 50-mm column packed with 1.7-μm particles operating at elevated pressure (UHPLC strategy) was selected to attain ultra-fast analysis and highly efficient separations. In order to reduce the complexity of wine extract and improve the recovery efficiency, a reverse-phase solid-phase extraction (SPE) procedure using as sorbent a new macroporous copolymer made from a balanced ratio of two monomers, the lipophilic divinylbenzene and the hydrophilic N-vinylpyrrolidone (Oasis™ HLB), was performed prior to UHPLC–PDA analysis. The calibration curves of bioactive metabolites showed good linearity within the established range. Limits of detection (LOD) and quantification (LOQ) ranged from 0.006 μg mL−1 to 0.58 μg mL−1, and from 0.019 μg mL−1 to 1.94 μg mL−1, for gallic and gentisic acids, respectively. The average recoveries ± SD for the three levels of concentration tested (n = 9) in red and white wines were, respectively, 89 ± 3% and 90 ± 2%. The repeatability expressed as relative standard deviation (RSD) was below 10% for all the metabolites assayed. The validated method was then applied to red and white wines from different geographical origins (Azores, Canary and Madeira Islands). The most abundant component in the analysed red wines was (−)-epicatechin followed by (−)-catechin and rutin, whereas in white wines syringic and p-coumaric acids were found the major phenolic metabolites. The method was completely validated, providing a sensitive analysis for bioactive phenolic metabolites detection and showing satisfactory data for all the parameters tested. Moreover, was revealed as an ultra-fast approach allowing the separation of the fifteen bioactive metabolites investigated with high resolution power within 5 min.