2 resultados para new degree program
em Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal
Resumo:
An ultra-fast and improved analytical methodology based on microextraction by packed sorbent (MEPS) combined with ultra-performance LC (UPLC) was developed and validated for determination of (E)-resveratrol in wines. Important factors affecting the performance of MEPS such as the type of sorbent material (C2, C8, C18, SIL, and M1), number of extraction cycles, and sample volume were studied. The optimal conditions of MEPS extraction were obtained using C8 sorbent and small sample volumes (50–250mL) in one extraction cycle (extract–discard) and in a short time period (about 3 min for the entire sample preparation step). (E)-Resveratrol was eluted by 1 250mL of the mixture containing 95% methanol and 5% water, and the separation was carried out on a highstrength silica HSS T3 analytical column (100 mm 2.1 mm, 1.8mm particle size) using a binary mobile phase composed of aqueous 0.1% formic acid (eluent A) and methanol (eluent B) in the gradient elution mode (10 min of total analysis). The method was fully validated in terms of linearity, detection (LOD) and quantification (LOQ) limits, extraction yield, accuracy, and inter/intra-day precision, using a Madeira wine sample (ET) spiked with (E)-resveratrol at concentration levels ranging from 5 to 60mg/mL. Validation experiments revealed very good recovery rate of 9575.8% RSD, good linearity with r2 values 40.999 within the established concentration range, excellent repeatability (0.52%), and reproducibility (1.67%) values (expressed as RSD), thus demonstrating the robustness and accuracy of the MEPSC8/UPLC-photodiode array (PDA) method. The LOD of the method was 0.21mg/mL, whereas the LOQ was 0.68mg/mL. The validated methodology was applied to 30 commercial wines (24 red wines and six white wines) from different grape varieties, vintages, and regions. On the basis of the analytical validation, the MEPSC8/UPLC-PDA methodology shows to be an improved, sensitive, and ultra-fast approach for determination of (E)-resveratrol in wines with high resolving power within 6 min.
Resumo:
This manuscript describes the development and validation of an ultra-fast, efficient, and high throughput analytical method based on ultra-high performance liquid chromatography (UHPLC) equipped with a photodiode array (PDA) detection system, for the simultaneous analysis of fifteen bioactive metabolites: gallic acid, protocatechuic acid, (−)-catechin, gentisic acid, (−)-epicatechin, syringic acid, p-coumaric acid, ferulic acid, m-coumaric acid, rutin, trans-resveratrol, myricetin, quercetin, cinnamic acid and kaempferol, in wines. A 50-mm column packed with 1.7-μm particles operating at elevated pressure (UHPLC strategy) was selected to attain ultra-fast analysis and highly efficient separations. In order to reduce the complexity of wine extract and improve the recovery efficiency, a reverse-phase solid-phase extraction (SPE) procedure using as sorbent a new macroporous copolymer made from a balanced ratio of two monomers, the lipophilic divinylbenzene and the hydrophilic N-vinylpyrrolidone (Oasis™ HLB), was performed prior to UHPLC–PDA analysis. The calibration curves of bioactive metabolites showed good linearity within the established range. Limits of detection (LOD) and quantification (LOQ) ranged from 0.006 μg mL−1 to 0.58 μg mL−1, and from 0.019 μg mL−1 to 1.94 μg mL−1, for gallic and gentisic acids, respectively. The average recoveries ± SD for the three levels of concentration tested (n = 9) in red and white wines were, respectively, 89 ± 3% and 90 ± 2%. The repeatability expressed as relative standard deviation (RSD) was below 10% for all the metabolites assayed. The validated method was then applied to red and white wines from different geographical origins (Azores, Canary and Madeira Islands). The most abundant component in the analysed red wines was (−)-epicatechin followed by (−)-catechin and rutin, whereas in white wines syringic and p-coumaric acids were found the major phenolic metabolites. The method was completely validated, providing a sensitive analysis for bioactive phenolic metabolites detection and showing satisfactory data for all the parameters tested. Moreover, was revealed as an ultra-fast approach allowing the separation of the fifteen bioactive metabolites investigated with high resolution power within 5 min.