2 resultados para merging

em Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tabletop computers featuring multi-touch input and object tracking are a common platform for research on Tangible User Interfaces (also known as Tangible Interaction). However, such systems are confined to sensing activity on the tabletop surface, disregarding the rich and relatively unexplored interaction canvas above the tabletop. This dissertation contributes with tCAD, a 3D modeling tool combining fiducial marker tracking, finger tracking and depth sensing in a single system. This dissertation presents the technical details of how these features were integrated, attesting to its viability through the design, development and early evaluation of the tCAD application. A key aspect of this work is a description of the interaction techniques enabled by merging tracked objects with direct user input on and above a table surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tissue engineering is an important branch of regenerative medicine that uses cells, materials (scaffolds), and suitable biochemical and physicochemical factors to improve or replace specific biological functions. In particular, the control of cell behavior (namely, of cell adhesion, proliferation and differentiation) is a key aspect for the design of successful therapeutical approaches. In this study, poly(lactic-co-glycolic acid) (PLGA) fiber mats were prepared using the electrospinning technology (the fiber diameters were in the micrometer range). Furthermore, the electrospun fiber mats thus formed were functionalized using the layer-by- layer (LbL) technique with chitosan and alginate (natural and biodegradable polyelectrolytes having opposite charges) as a mean for the immobilization of pDNA/dendrimer complexes. The polyelectrolyte multilayer deposition was confirmed by fluorescence spectroscopy using fluorescent-labeled polyelectrolytes. The electrospun fiber mats coated with chitosan and alginate were successfully loaded with complexes of pDNA and poly(amidoamine) (PAMAM) dendrimers (generation 5) and were able of releasing them in a controlled manner along time. In addition, these mats supported the adhesion and proliferation of NIH 3T3 cells and of human mesenchymal stem cells (hMSCs) in their surface. Transfection experiments using a pDNA encoding for luciferase showed the ability of the electrospun fiber mats to efficiently serve as gene delivery systems. When a pDNA encoding for bone morphogenetic protein-2 (BMP-2) was used, the osteoblastic differentiation of hMSCs cultured on the surface of the mats was promoted. Taken together, the results revealed that merging the electrospinning technique with the LbL technique, can be a suitable methodology for the creation of biological active matrices for bone tissue engineering.