1 resultado para fly
em Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (1)
- Academic Archive On-line (Mid Sweden University; Sweden) (1)
- Academic Archive On-line (Stockholm University; Sweden) (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (9)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (5)
- Aquatic Commons (6)
- ARCA - Repositório Institucional da FIOCRUZ (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (15)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (34)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (25)
- Biblioteca Digital de la Universidad Católica Argentina (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- Biodiversity Heritage Library, United States (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (15)
- Boston University Digital Common (1)
- Brock University, Canada (11)
- Bucknell University Digital Commons - Pensilvania - USA (6)
- CaltechTHESIS (11)
- Cambridge University Engineering Department Publications Database (15)
- CentAUR: Central Archive University of Reading - UK (25)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (24)
- Cochin University of Science & Technology (CUSAT), India (3)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Archives@Colby (2)
- Digital Commons - Michigan Tech (4)
- DigitalCommons@The Texas Medical Center (1)
- DigitalCommons@University of Nebraska - Lincoln (3)
- Duke University (6)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (77)
- FAUBA DIGITAL: Repositorio institucional científico y académico de la Facultad de Agronomia de la Universidad de Buenos Aires (2)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (3)
- Helda - Digital Repository of University of Helsinki (6)
- Indian Institute of Science - Bangalore - Índia (73)
- Infoteca EMBRAPA (1)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (1)
- Instituto Politécnico do Porto, Portugal (4)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (6)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (3)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (5)
- Ministerio de Cultura, Spain (3)
- National Center for Biotechnology Information - NCBI (13)
- Portal de Revistas Científicas Complutenses - Espanha (2)
- Publishing Network for Geoscientific & Environmental Data (6)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (42)
- Queensland University of Technology - ePrints Archive (117)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- Repositorio Academico Digital UANL (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (7)
- Repositorio de la Vicerrectoría de Investigación de la Universidad de Costa Rica (1)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (4)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (148)
- Royal College of Art Research Repository - Uninet Kingdom (4)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (6)
- Universidad Politécnica de Madrid (3)
- Universidade Complutense de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal do Pará (8)
- Universidade Federal do Rio Grande do Norte (UFRN) (10)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (4)
- Université de Lausanne, Switzerland (2)
- Université de Montréal (1)
- Université de Montréal, Canada (12)
- University of Michigan (57)
- University of Queensland eSpace - Australia (20)
- University of Southampton, United Kingdom (3)
- University of Washington (2)
- WestminsterResearch - UK (1)
Resumo:
This thesis examines the concept of tie strength and investigates how it can be determined on the fly in the Facebook Social Network Service (SNS) by a system constructed using the standard developer API. We analyze and compare two different models: the first one is an adaptation of previous literature (Gilbert & Karahalios, 2009), the second model is built from scratch and based on a dataset obtained from an online survey. This survey took the form of a Facebook application that collected subjective ratings of the strength of 1642 ties (friendships) from 85 different participants. The new tie strength model was built based on this dataset by using a multiple regression method. We saw that the new model performed slightly better than the original adapted model, plus it had the advantage of being easier to implement. In conclusion, this thesis has shown that tie strength models capable of serving as useful friendship predictors are easily implementable in a Facebook application via standard API calls. In addition to a new tie strength model, the methodology adopted in this work permitted observation of the weights of each predictive variable used in the model, increasing the visibility of the factors that affects peoples’ relationships in online social networks.