2 resultados para color correction
em Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal
Resumo:
Image stitching is the process of joining several images to obtain a bigger view of a scene. It is used, for example, in tourism to transmit to the viewer the sensation of being in another place. I am presenting an inexpensive solution for automatic real time video and image stitching with two web cameras as the video/image sources. The proposed solution relies on the usage of several markers in the scene as reference points for the stitching algorithm. The implemented algorithm is divided in four main steps, the marker detection, camera pose determination (in reference to the markers), video/image size and 3d transformation, and image translation. Wii remote controllers are used to support several steps in the process. The built‐in IR camera provides clean marker detection, which facilitates the camera pose determination. The only restriction in the algorithm is that markers have to be in the field of view when capturing the scene. Several tests where made to evaluate the final algorithm. The algorithm is able to perform video stitching with a frame rate between 8 and 13 fps. The joining of the two videos/images is good with minor misalignments in objects at the same depth of the marker,misalignments in the background and foreground are bigger. The capture process is simple enough so anyone can perform a stitching with a very short explanation. Although real‐time video stitching can be achieved by this affordable approach, there are few shortcomings in current version. For example, contrast inconsistency along the stitching line could be reduced by applying a color correction algorithm to every source videos. In addition, the misalignments in stitched images due to camera lens distortion could be eased by optical correction algorithm. The work was developed in Apple’s Quartz Composer, a visual programming environment. A library of extended functions was developed using Xcode tools also from Apple.
Resumo:
Computer vision is a field that uses techniques to acquire, process, analyze and understand images from the real world in order to produce numeric or symbolic information in the form of decisions [1]. This project aims to use computer vision to prepare an app to analyze a Madeira Wine and characterize it (identify its variety) by its color. Dry or sweet wines, young or old wines have a specific color. It uses techniques to compare histograms in order to analyze the images taken from a test sample inside a special container designed for this purpose. The color analysis from a wine sample using an image captured by a smartphone can be difficult. Many factors affect the captured image such as, light conditions, the background of the sample container due to the many positions the photo can be taken (different to capture facing a white wall or facing the floor for example). Using new technologies such as 3D printing it was possible to create a prototype that aims to control the effect of those external factors on the captured image. The results for this experiment are good indicators for future works. Although it’s necessary to do more tests, the first tests had a success rate of 80% to 90% of correct results. This report documents the development of this project and all the techniques and steps required to execute the tests.