2 resultados para brain, computer, interface

em Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Every time more we hear in our everyday statements like "I'm stressed!", "Don´t worry me more than I am." But in what sense can we use technology to combat these congestions that we deal with daily? Well, one way would be to use technology to create objects, systems or applications that can spoil us and preferably be imperceptible by the user and, for this we have the ubiquitous computing and nurturant technologies. The ubiquitous computing is increasingly discussed as well as ways to make your computer more subtle in the view of the user, which is subject of research and development. The use of technology as a source of relaxation and spoil us is a strand that is being explored in the context of nurturant technologies. Accordingly, this thesis is focused on the development of an object and several applications with which we can interact. The object and applications have the purpose to spoil us and help us relax after a long day at work or in some situation more stressful. The object developed employs technologies like the use of accelerometers and the applications developed employs communications between computers and Web cameras. This thesis begins with a brief introduction to the areas of research and others that we can include in this thesis, such as ubiquitous computing and the nurturant technologies, providing yet general information on stress and ways to mitigate it. Later is described some of the work already done and that influenced this thesis as well as the prototypes developed and the experiences performed, ending with a general conclusion and future work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As digital systems move away from traditional desktop setups, new interaction paradigms are emerging that better integrate with users’ realworld surroundings, and better support users’ individual needs. While promising, these modern interaction paradigms also present new challenges, such as a lack of paradigm-specific tools to systematically evaluate and fully understand their use. This dissertation tackles this issue by framing empirical studies of three novel digital systems in embodied cognition – an exciting new perspective in cognitive science where the body and its interactions with the physical world take a central role in human cognition. This is achieved by first, focusing the design of all these systems on a contemporary interaction paradigm that emphasizes physical interaction on tangible interaction, a contemporary interaction paradigm; and second, by comprehensively studying user performance in these systems through a set of novel performance metrics grounded on epistemic actions, a relatively well established and studied construct in the literature on embodied cognition. The first system presented in this dissertation is an augmented Four-in-a-row board game. Three different versions of the game were developed, based on three different interaction paradigms (tangible, touch and mouse), and a repeated measures study involving 36 participants measured the occurrence of three simple epistemic actions across these three interfaces. The results highlight the relevance of epistemic actions in such a task and suggest that the different interaction paradigms afford instantiation of these actions in different ways. Additionally, the tangible version of the system supports the most rapid execution of these actions, providing novel quantitative insights into the real benefits of tangible systems. The second system presented in this dissertation is a tangible tabletop scheduling application. Two studies with single and paired users provide several insights into the impact of epistemic actions on the user experience when these are performed outside of a system’s sensing boundaries. These insights are clustered by the form, size and location of ideal interface areas for such offline epistemic actions to occur, as well as how can physical tokens be designed to better support them. Finally, and based on the results obtained to this point, the last study presented in this dissertation directly addresses the lack of empirical tools to formally evaluate tangible interaction. It presents a video-coding framework grounded on a systematic literature review of 78 papers, and evaluates its value as metric through a 60 participant study performed across three different research laboratories. The results highlight the usefulness and power of epistemic actions as a performance metric for tangible systems. In sum, through the use of such novel metrics in each of the three studies presented, this dissertation provides a better understanding of the real impact and benefits of designing and developing systems that feature tangible interaction.