1 resultado para Trigonometry Formulas
em Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal
Filtro por publicador
- Abertay Research Collections - Abertay University’s repository (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (10)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- Applied Math and Science Education Repository - Washington - USA (65)
- Aquatic Commons (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (8)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (7)
- Aston University Research Archive (3)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (12)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (12)
- Biblioteca Digital de la Universidad Católica Argentina (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (4)
- Biblioteca Valenciana Digital - Ministerio de Educación, Cultura y Deporte - Valencia - Espanha (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (22)
- Brock University, Canada (6)
- Bulgarian Digital Mathematics Library at IMI-BAS (7)
- CaltechTHESIS (9)
- Cámara de Comercio de Bogotá, Colombia (2)
- Cambridge University Engineering Department Publications Database (5)
- CentAUR: Central Archive University of Reading - UK (22)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (75)
- Cochin University of Science & Technology (CUSAT), India (3)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (12)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (2)
- Digital Commons - Michigan Tech (3)
- DigitalCommons@The Texas Medical Center (5)
- DigitalCommons@University of Nebraska - Lincoln (3)
- Diposit Digital de la UB - Universidade de Barcelona (2)
- Duke University (1)
- Funes: Repositorio digital de documentos en Educación Matemática - Colombia (2)
- Greenwich Academic Literature Archive - UK (1)
- Harvard University (9)
- Helda - Digital Repository of University of Helsinki (11)
- Indian Institute of Science - Bangalore - Índia (40)
- Instituto Politécnico do Porto, Portugal (4)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (1)
- Memoria Académica - FaHCE, UNLP - Argentina (16)
- Ministerio de Cultura, Spain (7)
- National Center for Biotechnology Information - NCBI (7)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (51)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (22)
- Queensland University of Technology - ePrints Archive (43)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (4)
- Repositório digital da Fundação Getúlio Vargas - FGV (6)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (6)
- Repositorio Institucional de la Universidad Nacional Agraria (5)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (115)
- Royal College of Art Research Repository - Uninet Kingdom (1)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- SerWisS - Server für Wissenschaftliche Schriften der Fachhochschule Hannover (1)
- Universidad Autónoma de Nuevo León, Mexico (2)
- Universidad de Alicante (12)
- Universidad del Rosario, Colombia (8)
- Universidad Politécnica de Madrid (60)
- Universidade de Lisboa - Repositório Aberto (4)
- Universidade Federal do Pará (7)
- Universidade Federal do Rio Grande do Norte (UFRN) (19)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (5)
- Université de Lausanne, Switzerland (5)
- Université de Montréal, Canada (16)
- University of Connecticut - USA (1)
- University of Michigan (134)
- University of Queensland eSpace - Australia (1)
- University of Southampton, United Kingdom (9)
Resumo:
This thesis presents general methods in non-Gaussian analysis in infinite dimensional spaces. As main applications we study Poisson and compound Poisson spaces. Given a probability measure μ on a co-nuclear space, we develop an abstract theory based on the generalized Appell systems which are bi-orthogonal. We study its properties as well as the generated Gelfand triples. As an example we consider the important case of Poisson measures. The product and Wick calculus are developed on this context. We provide formulas for the change of the generalized Appell system under a transformation of the measure. The L² structure for the Poisson measure, compound Poisson and Gamma measures are elaborated. We exhibit the chaos decomposition using the Fock isomorphism. We obtain the representation of the creation, annihilation operators. We construct two types of differential geometry on the configuration space over a differentiable manifold. These two geometries are related through the Dirichlet forms for Poisson measures as well as for its perturbations. Finally, we construct the internal geometry on the compound configurations space. In particular, the intrinsic gradient, the divergence and the Laplace-Beltrami operator. As a result, we may define the Dirichlet forms which are associated to a diffusion process. Consequently, we obtain the representation of the Lie algebra of vector fields with compact support. All these results extends directly for the marked Poisson spaces.