3 resultados para The Matrix

em Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Stir bar sorptive extraction and liquid desorption followed by large volume injection coupled to gas chromatography–quadrupole mass spectrometry (SBSE–LD/LVI-GC–qMS) had been applied for the determination of volatiles in wines. The methodology was optimised in terms of extraction time and influence of ethanol in the matrix; LD conditions, and instrumental settings. The optimisation was carried out by using 10 standards representative of the main chemical families of wine, i.e. guaiazulene, E,E-farnesol, β-ionone, geranylacetone, ethyl decanoate, β-citronellol, 2-phenylethanol, linalool, hexyl acetate and hexanol. The methodology shows good linearity over the concentration range tested, with correlation coefficients higher than 0.9821, a good reproducibility was attained (8.9–17.8%), and low detection limits were achieved for nine volatile compounds (0.05–9.09 μg L−1), with the exception of 2-phenylethanol due to low recovery by SBSE. The analytical ability of the SBSE–LD/LVI-GC–qMS methodology was tested in real matrices, such as sparkling and table wines using analytical curves prepared by using the 10 standards where each one was applied to quantify the structurally related compounds. This methodology allowed, in a single run, the quantification of 67 wine volatiles at levels lower than their respective olfactory thresholds. The proposed methodology demonstrated to be easy to work-up, reliable, sensitive and with low sample requirement to monitor the volatile fraction of wine.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A large number of evidences correlate elevated levels of homocysteine (Hcys) with a higher cardiovascular diseases (CVDs) risk, especially, atherosclerosis. Similarly, abnormal low levels of the vitamins B6, B9 and B12 are associated to an instability in the methionine cycle with an over production of Hcys. Thus, biomedical sciences are looking forward for a cheaper, faster, precise and accurate analytical methodology to quantify these compounds in a suitable format for the clinical environment. Therefore the objective of this study was the development of a simple, inexpensive and appropriate methodology to use at the clinical level. To achieve this goal, a procedure integrating a digitally controlled (eVol®) microextraction by packed sorbent (MEPS) and an ultra performance liquid chromatography (UPLC) coupled to a photodiode array detector (PDA) was developed to identify and quantify Hcys vitamins B6, B9 and B12. Although different conditions were assayed, we were not able to combine Hcys with the vitamins in the same analytical procedure, and so we proceeded to the optimization of two methods differing only in the composition of the gradient of the mobile phase and the injected volume. It was found that MEPS did not bring any benefit to the quantification of the Hcys in the plasma. Therefore, we developed and validate an alternative method that uses the direct injection of treated plasma (reduced and precipitated). This same method was evaluated in terms of selectivity, linearity, limit of detection (LOD), limit of quantification (LOQ), matrix effect and precision (intra-and inter-day) and applied to the determination of Hcys in a group composed by patients presenting augmented CVD risk. Good results in terms of selectivity and linearity (R2> 0.9968) were obtained, being the values of LOD and LOQ 0.007 and 0.21 mol / L, respectively. The intra-day precision (1.23-3.32%), inter-day precision (5.43-6.99%) and the recovery rate (82.5 to 93.1%) of this method were satisfactory. The matrix effect (>120%) was, however, higher than we were waiting for. Using this methodology it was possible to determine the amount of Hcys in real plasma samples from individuals presenting augmented CVD risk. Regarding the methodology developed for vitamins, despite the optimization of the extraction technique and the chromatographic conditions, it was found that the levels usually present in plasma are far below the sensitivity we obtained. Therefore, further optimizations of the methodology developed are needed. As conclusion, part of the objectives of this study was achieved with the development of a quick, simple and cheaper method for the quantification of Hcys.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A stir bar sorptive extraction with liquid desorption followed by large volume injection coupled to gas chromatography–quadrupole mass spectrometry (SBSE-LD/LVI-GC–qMS) was evaluated for the simultaneous determination of higher alcohol acetates (HAA), isoamyl esters (IsoE) and ethyl esters (EE) of fatty acids. The method performance was assessed and compared with other solventless technique, the solid-phase microextraction (SPME) in headspace mode (HS). For both techniques, influential experimental parameters were optimised to provide sensitive and robust methods. The SBSE-LD/LVI methodology was previously optimised in terms of extraction time, influence of ethanol in the matrix, liquid desorption (LD) conditions and instrumental settings. Higher extraction efficiency was obtained using 60 min of extraction time, 10% ethanol content, n-pentane as desorption solvent, 15 min for the back-extraction period, 10 mL min−1 for the solvent vent flow rate and 10 °C for the inlet temperature. For HS-SPME, the fibre coated with 50/30 μm divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) afforded highest extraction efficiency, providing the best sensitivity for the target volatiles, particularly when the samples were extracted at 25 °C for 60 min under continuous stirring in the presence of sodium chloride (10% (w/v)). Both methodologies showed good linearity over the concentration range tested, with correlation coefficients higher than 0.984 for HS-SPME and 0.982 for SBES-LD approach, for all analytes. A good reproducibility was attained and low detection limits were achieved using both SBSE-LD (0.03–28.96 μg L−1) and HS-SPME (0.02–20.29 μg L−1) methodologies. The quantification limits for SBSE-LD approach ranging from 0.11 to 96.56 μg L−and from 0.06 to 67.63 μg L−1 for HS-SPME. Using the HS-SPME approach an average recovery of about 70% was obtained whilst by using SBSE-LD obtained average recovery were close to 80%. The analytical and procedural advantages and disadvantages of these two methods have been compared. Both analytical methods were used to determine the HAA, IsoE and EE fatty acids content in “Terras Madeirenses” table wines. A total of 16 esters were identified and quantified from the wine extracts by HS-SPME whereas by SBSE-LD technique were found 25 esters which include 2 higher alcohol acetates, 4 isoamyl esters and 19 ethyl esters of fatty acids. Generally SBSE-LD provided higher sensitivity with decreased analysis time.