1 resultado para Support Vector Machine
em Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal
Resumo:
A resistência a múltiplos fármacos é um grande problema na terapia anti-cancerígena, sendo a glicoproteína-P (P-gp) uma das responsáveis por esta resistência. A realização deste trabalho incidiu principalmente no desenvolvimento de modelos matemáticos/estatísticos e “químicos”. Para os modelos matemáticos/estatísticos utilizamos métodos de Machine Learning como o Support Vector Machine (SVM) e o Random Forest, (RF) em relação aos modelos químicos utilizou-se farmacóforos. Os métodos acima mencionados foram aplicados a diversas proteínas P-gp, p53 e complexo p53-MDM2, utilizando duas famílias: as pifitrinas para a p53 e flavonóides para P-gp e, em menor medida, um grupo diversificado de moléculas de diversas famílias químicas. Nos modelos obtidos pelo SVM quando aplicados à P-gp e à família dos flavonóides, obtivemos bons valores através do kernel Radial Basis Function (RBF), com precisão de conjunto de treino de 94% e especificidade de 96%. Quanto ao conjunto de teste com previsão de 70% e especificidade de 67%, sendo que o número de falsos negativos foi o mais baixo comparativamente aos restantes kernels. Aplicando o RF à família dos flavonóides verificou-se que o conjunto de treino apresenta 86% de precisão e uma especificidade de 90%, quanto ao conjunto de teste obtivemos uma previsão de 70% e uma especificidade de 60%, existindo a particularidade de o número de falsos negativos ser o mais baixo. Repetindo o procedimento anterior (RF) e utilizando um total de 63 descritores, os resultados apresentaram valores inferiores obtendo-se para o conjunto de treino 79% de precisão e 82% de especificidade. Aplicando o modelo ao conjunto de teste obteve-se 70% de previsão e 60% de especificidade. Comparando os dois métodos, escolhemos o método SVM com o kernel RBF como modelo que nos garante os melhores resultados de classificação. Aplicamos o método SVM à P-gp e a um conjunto de moléculas não flavonóides que são transportados pela P-gp, obteve-se bons valores através do kernel RBF, com precisão de conjunto de treino de 95% e especificidade de 93%. Quanto ao conjunto de teste, obtivemos uma previsão de 70% e uma especificidade de 69%, existindo a particularidade de o número de falsos negativos ser o mais baixo. Aplicou-se o método do farmacóforo a três alvos, sendo estes, um conjunto de inibidores flavonóides e de substratos não flavonóides para a P-gp, um grupo de piftrinas para a p53 e um conjunto diversificado de estruturas para a ligação da p53-MDM2. Em cada um dos quatro modelos de farmacóforos obtidos identificou-se três características, sendo que as características referentes ao anel aromático e ao dador de ligações de hidrogénio estão presentes em todos os modelos obtidos. Realizando o rastreio em diversas bases de dados utilizando os modelos, obtivemos hits com uma grande diversidade estrutural.