1 resultado para Sources and Occurance of Lipases
em Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal
Filtro por publicador
- Academic Archive On-line (Stockholm University; Sweden) (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (11)
- Aquatic Commons (19)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (6)
- Archive of European Integration (14)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (3)
- Aston University Research Archive (35)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (20)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (9)
- Bioline International (1)
- Blue Tiger Commons - Lincoln University - USA (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (43)
- Boston University Digital Common (3)
- Brock University, Canada (8)
- Bucknell University Digital Commons - Pensilvania - USA (4)
- Bulgarian Digital Mathematics Library at IMI-BAS (3)
- CaltechTHESIS (4)
- Cambridge University Engineering Department Publications Database (8)
- CamPuce - an association for the promotion of science and humanities in African Countries (1)
- CentAUR: Central Archive University of Reading - UK (44)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (31)
- Cochin University of Science & Technology (CUSAT), India (16)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (7)
- CORA - Cork Open Research Archive - University College Cork - Ireland (11)
- Cornell: DigitalCommons@ILR (1)
- Dalarna University College Electronic Archive (2)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (3)
- Digital Commons @ DU | University of Denver Research (3)
- Digital Commons at Florida International University (27)
- Digital Peer Publishing (2)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (11)
- DigitalCommons@University of Nebraska - Lincoln (4)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (6)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (8)
- Harvard University (8)
- Helda - Digital Repository of University of Helsinki (14)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (27)
- Instituto Politécnico do Porto, Portugal (2)
- Massachusetts Institute of Technology (1)
- Memorial University Research Repository (2)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (6)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (9)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (106)
- QSpace: Queen's University - Canada (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (47)
- Queensland University of Technology - ePrints Archive (76)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (5)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (89)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- School of Medicine, Washington University, United States (1)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (22)
- Universidade Complutense de Madrid (2)
- Universidade de Lisboa - Repositório Aberto (2)
- Universidade dos Açores - Portugal (1)
- Universidade Federal do Pará (1)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (5)
- Université de Lausanne, Switzerland (2)
- Université de Montréal, Canada (6)
- Université Laval Mémoires et thèses électroniques (1)
- University of Connecticut - USA (2)
- University of Michigan (80)
- University of Queensland eSpace - Australia (12)
- University of Southampton, United Kingdom (1)
- University of Washington (6)
- WestminsterResearch - UK (2)
Resumo:
In order to differentiate and characterize Madeira wines according to main grape varieties, the volatile composition (higher alcohols, fatty acids, ethyl esters and carbonyl compounds) was determined for 36 monovarietal Madeira wine samples elaborated from Boal, Malvazia, Sercial and Verdelho white grape varieties. The study was carried out by headspace solid-phase microextraction technique (HS-SPME), in dynamic mode, coupled with gas chromatography–mass spectrometry (GC–MS). Corrected peak area data for 42 analytes from the above mentioned chemical groups was used for statistical purposes. Principal component analysis (PCA) was applied in order to determine the main sources of variability present in the data sets and to establish the relation between samples (objects) and volatile compounds (variables). The data obtained by GC–MS shows that the most important contributions to the differentiation of Boal wines are benzyl alcohol and (E)-hex-3-en-1-ol. Ethyl octadecanoate, (Z)-hex-3-en-1-ol and benzoic acid are the major contributions in Malvazia wines and 2-methylpropan-1-ol is associated to Sercial wines. Verdelho wines are most correlated with 5-(ethoxymethyl)-furfural, nonanone and cis-9-ethyldecenoate. A 96.4% of prediction ability was obtained by the application of stepwise linear discriminant analysis (SLDA) using the 19 variables that maximise the variance of the initial data set.